login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A037055
Smallest prime containing exactly n 1's.
17
2, 13, 11, 1117, 10111, 101111, 1111151, 11110111, 101111111, 1111111121, 11111111113, 101111111111, 1111111118111, 11111111111411, 111111111116111, 1111111111111181, 11111111101111111, 101111111111111111, 1111111111111111171, 1111111111111111111, 111111111111111119111
OFFSET
0,1
COMMENTS
For n > 1, A037055 is conjectured to be identical to A084673. - Robert G. Wilson v, Jul 04 2003
a(n) = A002275(n) for n in A004023. For all other n < 900, a(n) has n+1 digits. - Robert Israel, Feb 21 2016
LINKS
FORMULA
a(n) = the smallest prime in { R-10^n, R-10^(n-1), ..., R-10; R+a*10^b, a=1, ..., 8, b=0, 1, 2, ..., n }, where R = (10^(n+1)-1)/9 is the (n+1)-digit repunit. - M. F. Hasler, Feb 25 2016
MAPLE
f:= proc(n) local m, d, r, x;
r:= (10^n-1)/9;
if isprime(r) then return r fi;
r:= (10^(n+1)-1)/9;
for m from n-1 to 1 by -1 do
x:= r - 10^m;
if isprime(x) then return x fi;
od;
for m from 0 to n do
for d from 1 to 8 do
x:= r + d*10^m;
if isprime(x) then return x fi;
od
od;
error("Needs more than n+1 digits")
end proc:
map(f, [$0..100]); # Robert Israel, Feb 21 2016
MATHEMATICA
f[n_, b_] := Block[{k = 10^(n + 1), p = Permutations[ Join[ Table[b, {i, 1, n}], {x}]], c = Complement[Table[j, {j, 0, 9}], {b}], q = {}}, Do[q = Append[q, Replace[p, x -> c[[i]], 2]], {i, 1, 9}]; r = Min[ Select[ FromDigits /@ Flatten[q, 1], PrimeQ[ # ] & ]]; If[r ? Infinity, r, p = Permutations[ Join[ Table[ b, {i, 1, n}], {x, y}]]; q = {}; Do[q = Append[q, Replace[p, {x -> c[[i]], y -> c[[j]]}, 2]], {i, 1, 9}, {j, 1, 9}]; Min[ Select[ FromDigits /@ Flatten[q, 1], PrimeQ[ # ] & ]]]]; Table[ f[n, 1], {n, 1, 18}]
Join[{2, 13}, Table[Sort[Flatten[Table[Select[FromDigits/@Permutations[Join[{n}, PadRight[{}, i, 1]]], PrimeQ], {n, 0, 9}]]][[1]], {i, 2, 20}]] (* Vincenzo Librandi, May 11 2017 *)
PROG
(PARI) A037055(n)={my(p, t=10^(n+1)\9); forstep(k=n+1, 1, -1, ispseudoprime(p=t-10^k) && return(p)); forvec(v=[[0, n], [1, 8]], ispseudoprime(p=t+10^v[1]*v[2]) && return(p))} \\ M. F. Hasler, Feb 22 2016
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Jan 04 1999
EXTENSIONS
More terms from Sascha Kurz, Feb 10 2003
Edited by Robert G. Wilson v, Jul 04 2003
a(0) = 2 inserted by Robert Israel, Feb 21 2016
STATUS
approved