OFFSET
2,1
COMMENTS
See A368946 for the description of the MIU formal system, A369173 for the triangle of the corresponding strings (theorems) and A369409 for the definition of "normal" proof.
The number of symbols of a proof is the sum of the number of characters contained in all of the strings (lines) of the proof; cf. Matos and Antunes (1998).
REFERENCES
Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262.
LINKS
Paolo Xausa, Table of n, a(n) for n = 2..10922 (rows 2..14 of the triangle, flattened).
Armando B. Matos and Luis Filipe Antunes, Short Proofs for MIU theorems, Technical Report Series DCC-98-01, University of Porto, 1998.
Wikipedia, MU Puzzle.
FORMULA
If A369173(n,k) contains no zeros and 3+2^m ones (for m >= 0), then T(n,k) = 2^(m+3) + 25*m + 2.
EXAMPLE
Triangle begins:
[2] 2;
[3] 13 13 5;
[4] 94 94 47 94 47 47;
[5] 75 75 31 75 31 31 75 31 31 31 10;
...
For the theorem MIU (310), which is given by A369173(3,2), the "normal" proof is MI (31) -> MII (311) -> MIIII (31111) -> MIU (310), which consists of a total of 13 symbols (counting only M, I and U characters): T(3,2) is therefore 13.
MATHEMATICA
MIUDigitsW3[n_] := Select[Tuples[{0, 1}, n - 1], !Divisible[Count[#, 1], 3]&];
MIUProofSymbolCount[t_] := Module[{c = Length[t], nu = Count[t, 0], ni}, ni = 2*nu+c; c += nu(nu+c+2); While[ni > 1, If[OddQ[ni], c += (7*ni+3)/2 + 13; ni = (ni+3)/2, c += ni/2 + 1; ni/=2]]; c+1];
Map[MIUProofSymbolCount, Array[MIUDigitsW3, 7, 2], {2}]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Paolo Xausa, Jan 23 2024
STATUS
approved