login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037071 Smallest prime containing exactly n 9's. 18
2, 19, 199, 1999, 49999, 199999, 2999999, 19999999, 799999999, 9199999999, 59999999999, 959999999999, 9919999999999, 59999999999999, 499999999999999, 9299999999999999, 99919999999999999, 994999999999999999, 9991999999999999999, 29999999999999999999, 989999999999999999999 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

We conjecture that for all n >= 0, a(n) equals [10^(n+1)/9]*9 with one of the (first) digits 9 replaced by a digit among {1, 2, 4, 5, 7, 8}. - M. F. Hasler, Feb 22 2016

LINKS

M. F. Hasler, Table of n, a(n) for n = 0..200

MATHEMATICA

f[n_, b_] := Block[{k = 10^(n + 1), p = Permutations[ Join[ Table[b, {i, 1, n}], {x}]], c = Complement[Table[j, {j, 0, 9}], {b}], q = {}}, Do[q = Append[q, Replace[p, x -> c[[i]], 2]], {i, 1, 9}]; r = Min[ Select[ FromDigits /@ Flatten[q, 1], PrimeQ[ # ] & ]]; If[r ? Infinity, r, p = Permutations[ Join[ Table[ b, {i, 1, n}], {x, y}]]; q = {}; Do[q = Append[q, Replace[p, {x -> c[[i]], y -> c[[j]]}, 2]], {i, 1, 9}, {j, 1, 9}]; Min[ Select[ FromDigits /@ Flatten[q, 1], PrimeQ[ # ] & ]]]]; Table[ f[n, 9], {n, 1, 20}]

PROG

(PARI) A037071(n)={my(t=10^(n+1)\9*9); forvec(v=[[-1, n], [-8, -1]], ispseudoprime(p=t+10^(n-v[1])*v[2]) && return(p)); error} \\ M. F. Hasler, Feb 22 2016

CROSSREFS

Cf. A065592, A065582, A037070, A034388, A036507-A036536.

Cf. A037053, A037055, A037057, A037059, A037061, A037063, A037065, A037067, A037069.

Sequence in context: A145104 A114016 A268707 * A126039 A349256 A091852

Adjacent sequences: A037068 A037069 A037070 * A037072 A037073 A037074

KEYWORD

nonn,base

AUTHOR

Patrick De Geest, Jan 04 1999

EXTENSIONS

More terms from Vladeta Jovovic, Jan 10 2002

a(0) = 2 prepended by M. F. Hasler, Feb 22 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 17:46 EST 2022. Contains 358703 sequences. (Running on oeis4.)