login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A031359
Bisection of A001615.
2
1, 4, 6, 8, 12, 12, 14, 24, 18, 20, 32, 24, 30, 36, 30, 32, 48, 48, 38, 56, 42, 44, 72, 48, 56, 72, 54, 72, 80, 60, 62, 96, 84, 68, 96, 72, 74, 120, 96, 80, 108, 84, 108, 120, 90, 112, 128, 120, 98, 144, 102, 104, 192, 108, 110, 152, 114, 144, 168, 144, 132, 168
OFFSET
1,2
COMMENTS
Number of coincidence site lattices of index 2n-1 in lattice Z^3.
REFERENCES
Michael Baake, "Solution of the coincidence problem in dimensions d <= 4", in R. V. Moody, ed., Mathematics of Long-Range Aperiodic Order, Kluwer, 1997, pp. 9-44.
LINKS
Michael Baake, Solution of coincidence problem in dimensions d<=4, arXiv:math/0605222 [math.MG], 2006.
Michael Baake and Peter A. B. Pleasants, Algebraic solution of the coincidence problem in two and three dimensions, Zeitschrift für Naturforschung A 50.8 (1995): 711-717. See page 715, the Dirichlet g.f. following Eq. (18).
FORMULA
a(n) = b(2*n - 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = p^(e-1) * (p+1) if p > 2. - Michael Somos, Nov 22 2013
Dirichlet series: Product (1+p^(-s))/(1-p^(1-s)); p != 2.
a(n) = A001615(2*n - 1).
From Peter Bala, Mar 19 2019: (Start)
a(n) = (2*n - 1)*Product_{p|(2*n-1), p prime} (1 + 1/p).
a(n) = Sum_{ d|(2*n-1) } mu(d)^2*(2*n-1)/d, where mu(n) = A008683(n) is the Möbius function.
a(n) = Sum_{ d^2|(2*n-1) } mu(d)*sigma((2*n-1)/d^2), where sigma(n) = A000203(n) is the sum of the divisors of n, and also
a(n) = Sum_{ d|(2*n-1) } 2^omega(d)*phi((2*n-1)/d), where omega(n) = A001221(n) is the number of different primes dividing n and phi(n) = A000010 is the Euler totient function.
O.g.f.: Sum_{n >= 1} mu(2*n-1)^2*x^n*(1 + x^(2*n-1))/(1 - x^(2*n-1))^2.
Bisection of A159634. (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = 12/Pi^2 = 1.215854... . - Amiram Eldar, Nov 24 2022
EXAMPLE
G.f. = x + 4*x^2 + 6*x^3 + 8*x^4 + 12*x^5 + 12*x^6 + 14*x^7 + 24*x^8 + ...
G.f. = q + 4*q^3 + 6*q^5 + 8*q^7 + 12*q^9 + 12*q^11 + 14*q^13 + 24*q^15 + ...
MAPLE
A001615 := n -> mul((op(1, i)+1)*op(1, i)^(op(2, i)-1), i=op(2, numtheory[ifactors](n)));
A031359 := n -> A001615(2*n-1); # Peter Luschny, Oct 23 2010
MATHEMATICA
a[n_] := (2n-1)*Sum[ MoebiusMu[d]^2/d, {d, Divisors[2n-1]}]; Table[a[n], {n, 1, 62}] (* Jean-François Alcover, Jan 18 2012, after Michael Somos *)
a[ n_] := If[ n < 1, 0, With[{m = 2 n - 1}, m Sum[ MoebiusMu[ d]^2 / d, {d, Divisors[m]}]]] (* Michael Somos, Nov 22 2013 *)
PROG
(Haskell)
a031359 = a001615 . (subtract 1) . (* 2)
-- Reinhard Zumkeller, Jun 03 2013
(PARI) {a(n) = my(m); if( n<1, 0, m = 2*n - 1; m * sumdiv( m, d, moebius(d)^2 / d))} /* Michael Somos, Nov 22 2013 */
(PARI) {a(n) = my(m); if( n<1, 0, m = 2*n - 1; direuler( p=2, m, (1 + X) / (1 - p*X))[ m])} /* Michael Somos, Nov 22 2013 */
(PARI) {a(n) = my(A, p, e); if( n<1, 0, n = 2*n - 1; A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 0, p^(e-1) * (p + 1)))))} /* Michael Somos, Nov 22 2013 */
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
Better description from Vladeta Jovovic, Jan 25 2002
More terms from Sascha Kurz, Mar 24 2002
STATUS
approved