OFFSET
1,2
COMMENTS
Number of coincidence site lattices of index 2n-1 in lattice Z^3.
REFERENCES
Michael Baake, "Solution of the coincidence problem in dimensions d <= 4", in R. V. Moody, ed., Mathematics of Long-Range Aperiodic Order, Kluwer, 1997, pp. 9-44.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Michael Baake, Solution of coincidence problem in dimensions d<=4, arXiv:math/0605222 [math.MG], 2006.
Michael Baake and Peter A. B. Pleasants, Algebraic solution of the coincidence problem in two and three dimensions, Zeitschrift für Naturforschung A 50.8 (1995): 711-717. See page 715, the Dirichlet g.f. following Eq. (18).
FORMULA
a(n) = b(2*n - 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = p^(e-1) * (p+1) if p > 2. - Michael Somos, Nov 22 2013
Dirichlet series: Product (1+p^(-s))/(1-p^(1-s)); p != 2.
a(n) = A001615(2*n - 1).
From Peter Bala, Mar 19 2019: (Start)
a(n) = (2*n - 1)*Product_{p|(2*n-1), p prime} (1 + 1/p).
a(n) = Sum_{ d|(2*n-1) } mu(d)^2*(2*n-1)/d, where mu(n) = A008683(n) is the Möbius function.
a(n) = Sum_{ d^2|(2*n-1) } mu(d)*sigma((2*n-1)/d^2), where sigma(n) = A000203(n) is the sum of the divisors of n, and also
a(n) = Sum_{ d|(2*n-1) } 2^omega(d)*phi((2*n-1)/d), where omega(n) = A001221(n) is the number of different primes dividing n and phi(n) = A000010 is the Euler totient function.
O.g.f.: Sum_{n >= 1} mu(2*n-1)^2*x^n*(1 + x^(2*n-1))/(1 - x^(2*n-1))^2.
Bisection of A159634. (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = 12/Pi^2 = 1.215854... . - Amiram Eldar, Nov 24 2022
EXAMPLE
G.f. = x + 4*x^2 + 6*x^3 + 8*x^4 + 12*x^5 + 12*x^6 + 14*x^7 + 24*x^8 + ...
G.f. = q + 4*q^3 + 6*q^5 + 8*q^7 + 12*q^9 + 12*q^11 + 14*q^13 + 24*q^15 + ...
MAPLE
A001615 := n -> mul((op(1, i)+1)*op(1, i)^(op(2, i)-1), i=op(2, numtheory[ifactors](n)));
MATHEMATICA
a[n_] := (2n-1)*Sum[ MoebiusMu[d]^2/d, {d, Divisors[2n-1]}]; Table[a[n], {n, 1, 62}] (* Jean-François Alcover, Jan 18 2012, after Michael Somos *)
a[ n_] := If[ n < 1, 0, With[{m = 2 n - 1}, m Sum[ MoebiusMu[ d]^2 / d, {d, Divisors[m]}]]] (* Michael Somos, Nov 22 2013 *)
PROG
(Haskell)
a031359 = a001615 . (subtract 1) . (* 2)
-- Reinhard Zumkeller, Jun 03 2013
(PARI) {a(n) = my(m); if( n<1, 0, m = 2*n - 1; m * sumdiv( m, d, moebius(d)^2 / d))} /* Michael Somos, Nov 22 2013 */
(PARI) {a(n) = my(m); if( n<1, 0, m = 2*n - 1; direuler( p=2, m, (1 + X) / (1 - p*X))[ m])} /* Michael Somos, Nov 22 2013 */
(PARI) {a(n) = my(A, p, e); if( n<1, 0, n = 2*n - 1; A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 0, p^(e-1) * (p + 1)))))} /* Michael Somos, Nov 22 2013 */
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Better description from Vladeta Jovovic, Jan 25 2002
More terms from Sascha Kurz, Mar 24 2002
STATUS
approved