The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275789 Least k such that sigma(n) divides Fibonacci(k) (k > 0). 1
 1, 4, 6, 8, 12, 12, 6, 20, 7, 12, 12, 24, 24, 12, 12, 30, 12, 28, 30, 24, 24, 12, 12, 60, 30, 24, 30, 24, 60, 12, 24, 24, 12, 36, 12, 56, 18, 60, 24, 60, 24, 24, 30, 24, 84, 12, 12, 30, 36, 60, 12, 168, 36, 60, 12, 60, 60, 60, 60, 24, 30, 24, 42, 128, 24, 12, 18, 24, 24, 12, 12 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A001177(A000203(n)). - Robert Israel, Aug 09 2016 log n << a(n) << n log log n. - Charles R Greathouse IV, Aug 12 2016 EXAMPLE a(5) = 12 because Fibonacci(12) = 144 is divisible by sigma(5) = 6. MATHEMATICA Table[k = 1; While[! Divisible[Fibonacci@k, DivisorSigma[1, n]], k++]; k, {n, 120}] (* Michael De Vlieger, Aug 11 2016 *) PROG (PARI) a(n)=my(k=1); while(fibonacci(k) % sigma(n), k++); k; (PARI) a(n)=my(s=sigma(n), a=Mod(1, s), b=a, k=1); while(a, [a, b]=[b, a+b]; k++); k \\ Charles R Greathouse IV, Aug 12 2016 (Perl) use ntheory ":all"; sub a275789 { my(\$sigma, \$k)=(divisor_sum(shift), 1); return 1 if \$sigma==1; \$k++ while (lucas_sequence(\$sigma, 1, -1, \$k))[0]; \$k; } # Dana Jacobsen, Aug 15 2016 CROSSREFS Cf. A000045, A001177, A000203, A272412. Sequence in context: A110646 A320126 A234520 * A031359 A274790 A179852 Adjacent sequences: A275786 A275787 A275788 * A275790 A275791 A275792 KEYWORD nonn AUTHOR Altug Alkan, Aug 09 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 20:30 EDT 2024. Contains 374585 sequences. (Running on oeis4.)