login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275788
a(0) = 0, a(n+1) = 2*a(n) + (-1)^floor(n/3).
1
0, 1, 3, 7, 13, 25, 49, 99, 199, 399, 797, 1593, 3185, 6371, 12743, 25487, 50973, 101945, 203889, 407779, 815559, 1631119, 3262237, 6524473, 13048945, 26097891, 52195783, 104391567, 208783133, 417566265, 835132529, 1670265059, 3340530119, 6681060239
OFFSET
0,3
COMMENTS
a(n) and its successive differences:
0, 1, 3, 7, 13, 25, 49, ...
1, 2, 4, 6, 12, 24, 50, 100, ...
1, 2, 2, 6, 12, 26, 50, 100, 198, ...
1, 0, 4, 6, 14, 24, 50, 98, 200, 398, ...
-1, 4, 2, 8, 10, 26, 48, 102, 198, 400, 794, ...
5, -2, 6, 2, 16, 22, 54, 96, 202, 394, 800, 1590, ...
-7, 8, -4, 14, 6, 32, 42, 106, 192, 406, 790, 1600, 3178, ...
... .
Each row has the recurrence a(n) + a(n+3) = 7*2^n.
Main diagonal: 2*A001045(n).
Upper diagonals: A084214(n+1), 3*2^n, ... .
Subdiagonals: 2^n, A078008(n), A084214(n+1), -2^n, ... .
a(-n) = 0, 1/2, 3/4, 7/8, -1/16, -17/32, -49/64, 15/128, ... .
b(n), numerators of a(-n), and first differences:
0, 1, 3, 7, -1, -17, -49, 15, 143, 399, -113, -1137, ...
1, 2, 4, -8, -16, -32, 64, 128, 256, -512, -1024, ... = A000079(n)*A130151(n), not in the OEIS.
FORMULA
From Colin Barker, Aug 09 2016: (Start)
a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4) for n>3.
G.f.: x*(1 + x + x^2) / ((1+x)*(1-2*x)*(1-x+x^2)).
(End)
a(n+3) = 7*2^n - a(n), a(0)=0, a(1)=1, a(2)=3.
EXAMPLE
a(1)=2*0+1=1, a(2)=2*1+1=3, a(2)=2*3+1=7, a(3)=2*7-1=13, a(4)=2*13-1=25, ... .
MATHEMATICA
CoefficientList[Series[x (1 + x + x^2)/((1 + x) (1 - 2 x) (1 - x + x^2)), {x, 0, 33}], x] (* Michael De Vlieger, Aug 11 2016 *)
LinearRecurrence[{2, 0, -1, 2}, {0, 1, 3, 7}, 25] (* G. C. Greubel, Aug 16 2016 *)
PROG
(PARI) concat(0, Vec(x*(1+x+x^2)/((1+x)*(1-2*x)*(1-x+x^2)) + O(x^40))) \\ Colin Barker, Aug 10 2016
KEYWORD
nonn
AUTHOR
Paul Curtz, Aug 09 2016
EXTENSIONS
More terms from Colin Barker, Aug 10 2016
STATUS
approved