login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 0, a(n+1) = 2*a(n) + (-1)^floor(n/3).
1

%I #29 Oct 09 2016 04:13:44

%S 0,1,3,7,13,25,49,99,199,399,797,1593,3185,6371,12743,25487,50973,

%T 101945,203889,407779,815559,1631119,3262237,6524473,13048945,

%U 26097891,52195783,104391567,208783133,417566265,835132529,1670265059,3340530119,6681060239

%N a(0) = 0, a(n+1) = 2*a(n) + (-1)^floor(n/3).

%C a(n) and its successive differences:

%C 0, 1, 3, 7, 13, 25, 49, ...

%C 1, 2, 4, 6, 12, 24, 50, 100, ...

%C 1, 2, 2, 6, 12, 26, 50, 100, 198, ...

%C 1, 0, 4, 6, 14, 24, 50, 98, 200, 398, ...

%C -1, 4, 2, 8, 10, 26, 48, 102, 198, 400, 794, ...

%C 5, -2, 6, 2, 16, 22, 54, 96, 202, 394, 800, 1590, ...

%C -7, 8, -4, 14, 6, 32, 42, 106, 192, 406, 790, 1600, 3178, ...

%C ... .

%C Each row has the recurrence a(n) + a(n+3) = 7*2^n.

%C Main diagonal: 2*A001045(n).

%C Upper diagonals: A084214(n+1), 3*2^n, ... .

%C Subdiagonals: 2^n, A078008(n), A084214(n+1), -2^n, ... .

%C a(-n) = 0, 1/2, 3/4, 7/8, -1/16, -17/32, -49/64, 15/128, ... .

%C b(n), numerators of a(-n), and first differences:

%C 0, 1, 3, 7, -1, -17, -49, 15, 143, 399, -113, -1137, ...

%C 1, 2, 4, -8, -16, -32, 64, 128, 256, -512, -1024, ... = A000079(n)*A130151(n), not in the OEIS.

%H Colin Barker, <a href="/A275788/b275788.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-1,2).

%F From _Colin Barker_, Aug 09 2016: (Start)

%F a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4) for n>3.

%F G.f.: x*(1 + x + x^2) / ((1+x)*(1-2*x)*(1-x+x^2)).

%F (End)

%F a(n+3) = 7*2^n - a(n), a(0)=0, a(1)=1, a(2)=3.

%e a(1)=2*0+1=1, a(2)=2*1+1=3, a(2)=2*3+1=7, a(3)=2*7-1=13, a(4)=2*13-1=25, ... .

%t CoefficientList[Series[x (1 + x + x^2)/((1 + x) (1 - 2 x) (1 - x + x^2)), {x, 0, 33}], x] (* _Michael De Vlieger_, Aug 11 2016 *)

%t LinearRecurrence[{2,0,-1,2}, {0, 1, 3, 7}, 25] (* _G. C. Greubel_, Aug 16 2016 *)

%o (PARI) concat(0, Vec(x*(1+x+x^2)/((1+x)*(1-2*x)*(1-x+x^2)) + O(x^40))) \\ _Colin Barker_, Aug 10 2016

%Y Cf. A000079, A001045, A002264, A005009, A007283, A078008, A084214, A113405, A130151, A274817.

%K nonn

%O 0,3

%A _Paul Curtz_, Aug 09 2016

%E More terms from _Colin Barker_, Aug 10 2016