The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A031360 Number of symmetrically inequivalent coincidence rotations of index 2n-1 in lattice D_4. 5
 1, 16, 36, 64, 168, 144, 196, 576, 324, 400, 1024, 576, 960, 1584, 900, 1024, 2304, 2304, 1444, 3136, 1764, 1936, 6048, 2304, 3248, 5184, 2916, 5184, 6400, 3600, 3844, 10752, 7056, 4624, 9216, 5184, 5476, 15360, 9216, 6400, 14472, 7056, 11664, 14400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The aerated sequence 1, 0, 16, 0, 36, 0, 64, 0, 168,.. is multiplicative. - R. J. Mathar, Sep 30 2011 Some symmetrically distinct rotations generate the same coincidence site lattices, hence a(n) >= A331139(n). - Andrey Zabolotskiy, Jan 29 2020 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 M. Baake, "Solution of coincidence problem...", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44. arXiv:math/0605222 [math.MG] Michael Baake and Peter Zeiner, Coincidences in 4 dimensions, Phil. Mag. 88 (2008), 2025-2032; arXiv:0712.0363 [math.MG] Philip Boyle Smith and David Tong, What Symmetries are Preserved by a Fermion Boundary State?, arXiv:2006.07369 [hep-th], 2020. Index entries for sequences related to D_4 lattice FORMULA Dirichlet series for the aerated 1, 0, 16, 0, 36, 0, 64 ..: Product_{odd primes p} (1+p^(-s))*(1+p^(1-s))/((1-p^(1-s))*(1-p^(2-s))). Dirichlet g.f. for the aerated sequence is Zeta(s) *Zeta(s-1)^2 *Zeta(s-2) / (Zeta(2*s) * Zeta(2*s-2)) *(1-2^(1-s)) *(1-2^(2-s))/ ( (1+2^(-s))*(1+2^(1-s)) ). - R. J. Mathar, Sep 30 2011 Sum_{k=1..n} a(k) ~ 1680 * Zeta(3) * n^3 / Pi^6. - Vaclav Kotesovec, Feb 07 2019 MAPLE read("transforms") : maxOrd := 120 : ZetaNum := proc(p, nmax, f) local n ; L := [1, seq(0, n=2..p-1), f, seq(0, n=p+1..nmax)] ; end proc: Zeta := proc(p, nmax, f) local L, e; L := [1, seq(0, n=2..nmax)] ; for e from 1 do if p^e > nmax then break; else L := subsop(p^e=f^e, L) ; end if; end do: L ; end proc: Zetap := [1, seq(0, n=2..maxOrd)] : for e from 3 to maxOrd do if isprime(e) then ZetaNum(e, maxOrd, 1) ; Zetap := DIRICHLET(Zetap, %) ; ZetaNum(e, maxOrd, e) ; Zetap := DIRICHLET(Zetap, %) ; Zeta(e, maxOrd, e) ; Zetap := DIRICHLET(Zetap, %) ; Zeta(e, maxOrd, e^2) ; Zetap := DIRICHLET(Zetap, %) ; end if; end do: seq( Zetap[2*e+1], e=0..nops(Zetap)/2-1) ; # R. J. Mathar, Jul 16 2010 MATHEMATICA a[1]=1; a[n_ /; n >= 2 && IntegerQ[Log[2, n]]] = 0; a[p_?PrimeQ] := (p+1)^2; a[n_] := a[n] = If[Length[f = FactorInteger[n]] == 1, {p, r} = First[f]; (p+1)/(p-1)*p^(r-1)*(p^(r+1)+p^(r-1)-2), Times @@ (a /@ Power @@@ f)]; Table[a[n], {n, 1, 87, 2}] (* Jean-François Alcover, Apr 17 2013 *) PROG (PARI) a(n, f=factor(2*n-1))=prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); (p+1)/(p-1)*p^(e-1)*(p^(e+1)+p^(e-1)-2)) \\ Charles R Greathouse IV, Aug 26 2017 CROSSREFS Cf. A031361, A331139, A331141. Sequence in context: A062312 A326709 A331139 * A295016 A125240 A050775 Adjacent sequences: A031357 A031358 A031359 * A031361 A031362 A031363 KEYWORD nonn,easy,nice AUTHOR N. J. A. Sloane EXTENSIONS More terms from R. J. Mathar, Jul 16 2010 Name corrected by Andrey Zabolotskiy, Jan 29 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 18:55 EDT 2024. Contains 375166 sequences. (Running on oeis4.)