login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A031362
Number of coincidence site modules of index 10n+1 with 10-fold symmetry in plane.
1
1, 4, 0, 4, 4, 0, 4, 4, 0, 0, 4, 0, 8, 4, 0, 4, 0, 0, 4, 4, 0, 4, 0, 0, 4, 4, 0, 4, 4, 0, 0, 4, 0, 4, 16, 0, 0, 0, 0, 0, 4, 0, 4, 4, 0, 16, 4, 0, 0, 4, 0, 0, 4, 0, 4, 0, 0, 4, 0, 0, 4, 0, 0, 4, 4, 0, 4, 16, 0, 4, 4, 0, 0, 0, 0, 4, 4, 0, 16, 0, 0, 4, 4, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 4, 0, 8, 4, 0, 4
OFFSET
1,2
COMMENTS
The Dirichlet g.f. is Sum_{n>=0} a(n+1)/(1+10n)^s. - R. J. Mathar, Jul 16 2010
REFERENCES
M. Baake, "Solution of coincidence problem...", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.
Baake, M. and P. A. B. Pleasants. "The coincidence problem for crystals and quasicrystals." Aperiodic, vol. 94, pp. 25-29. 1995.
FORMULA
Dirichlet series: Product ((1+p^(-s))/(1-p^(-s)))^2 (p=1 mod 5).
MAPLE
read("transforms") : maxOrd := 1000 :
ZetaNum := proc(p, nmax, f) local n ; L := [1, seq(0, n=2..p-1), f, seq(0, n=p+1..nmax)] ; end proc:
Zeta := proc(p, nmax, f) local L, e; L := [1, seq(0, n=2..nmax)] ; for e from 1 do if p^e > nmax then break; else L := subsop(p^e=f^e, L) ; end if; end do: L ; end proc:
Zetap := [1, seq(0, n=2..maxOrd)] : for e from 1 to maxOrd by 5 do if isprime(e) then ZetaNum(e, maxOrd, 1) ; Zetap := DIRICHLET(Zetap, %) ; Zeta(e, maxOrd, 1) ; Zetap := DIRICHLET(Zetap, %) ; end if; end do:
Zetap := DIRICHLET(Zetap, Zetap) ; seq( Zetap[1+10*e], e=0..(nops(Zetap)-1)/10) ;
# R. J. Mathar, Jul 16 2010
MATHEMATICA
did[m_, n_] := If[Mod[m, n] == 0, 1, 0];
DIRICHLET[a_List, b_List] := Module[{c = {}, i, s, d}, For[i = 1, i <= Min[Length[a], Length[b]], i++, s = 0; For[d = 1, d <= i, d++, If[did[i, d] == 1, s = s + a[[d]] b[[i/d]]]]; c = Append[c, s]]; c];
maxOrd = 1000;
zetaNum [p_, nmax_, f_] := Module[{n}, L = Join[{1}, Table[0, {n, 2, p - 1}], {f}, Table[0, {n, p + 1, nmax}]]];
zeta[p_, nmax_, f_] := Module[{L, e}, L = Join[{1}, Table[0, {n, 2, nmax}]]; For[e = 1, True, e++, If [p^e > nmax, Break[], L = ReplacePart[L, p^e -> f^e]]]; L];
zetap = Join[{1}, Table[0, {n, 2, maxOrd}]]; For[e = 1, e <= maxOrd, e += 5, If[PrimeQ[e], ze = zetaNum[e, maxOrd, 1];
zetap = DIRICHLET[zetap, ze]; ze = zeta[e, maxOrd, 1];
zetap = DIRICHLET[zetap, ze]]];
zetap = DIRICHLET[zetap, zetap];
Table[zetap[[1 + 10 e]], {e, 0, (Length[zetap] - 1)/10}] (* Jean-François Alcover, Apr 05 2020, after R. J. Mathar *)
PROG
(PARI)
M=1200
t4=direuler(p=2, M, (1+(p%5<2)*X)) \\ p == 0 or 1 mod 5
t5=direuler(p=2, M, 1/(1+(p%5<1)*X)) \\ p == 0 mod 5
t6=dirmul(t4, t5) \\ p == 1 mod 5
t7=direuler(p=2, M, 1/(1-(p%5<2)*X))
t8=direuler(p=2, M, (1-(p%5<1)*X))
t9=dirmul(t7, t8)
t10=dirmul(t6, t9)
t10b=dirmul(t10, t10)
t11=vector(40, n, t10b[10*n+1]) \\ (and then prepend 1)
\\ N. J. A. Sloane, Nov 15 2019
CROSSREFS
Sequence in context: A016680 A062524 A152856 * A378012 A198414 A377784
KEYWORD
nonn,easy
EXTENSIONS
More terms from R. J. Mathar, Jul 16 2010
STATUS
approved