OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).
FORMULA
a(n+5) = a(n) with a(0) = a(2) = a(4) = 4, a(1) = 0 and a(3) = 3
a(n) = 3+(1/2-3/10*5^(1/2))*cos(2*n*Pi/5)+(-1/10*(4*(5+5^(1/2))^(1/2)-(5-5^(1/2))^(1/2))*2^(1/2))*sin(2*n*Pi/5)+(3/10*5^(1/2)+1/2)*cos(4*n*Pi/5)+(-1/10*((5+5^(1/2))^(1/2)+4*(5-5^(1/2))^(1/2))*2^(1/2))*sin(4*n*Pi/5)
o.g.f f(z) = (4+4*z^2+3*z^3+4*z^4)/(1-z^5)
MATHEMATICA
PadRight[{}, 100, {4, 0, 4, 3, 4}] (* Harvey P. Dale, Jun 08 2014 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Dec 14 2008
STATUS
approved