OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).
FORMULA
a(n+5) = a(n) with a(0) = a(3) = a(4) = 0, a(1) = 2 and a(2) = 3.
O.g.f f(z) = (2*z+3*z^2)/(1-z^5).
a(n) = 1+(-1/2-1/10*5^(1/2))*cos(2*n*Pi/5)+(1/10*(3*(5-5^(1/2))^(1/2)+2*(5+5^(1/2))^(1/2))*2^(1/2))*sin(2*n*Pi/5)+(1/10*5^(1/2)-1/2)*cos(4*n*Pi/5)+(1/10*(2*(5-5^(1/2))^(1/2)-3*(5+5^(1/2))^(1/2))*2^(1/2))*sin(4*n*Pi/5).
a(n) = (5 + 4*cos(2*(n-1)*Pi/5) + 4*cos(4*(n-1)*Pi/5) + 6*cos(2*(n+3)*Pi/5) + 6*cos(4*(n+3)*Pi/5))/5. - Wesley Ivan Hurt, Jun 25 2022
MATHEMATICA
PadRight[{}, 100, {0, 2, 3, 0, 0}] (* Harvey P. Dale, Aug 09 2021 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Dec 14 2008
STATUS
approved