login
A286530
a(n) = d(n+d(n)) - d(n), where d(n) is the number of divisors of n (A000005).
4
1, 1, 0, -1, 0, 0, 1, 2, 3, 0, 0, 0, 2, 2, -2, -1, 0, 2, 2, -2, -1, 0, 1, -2, 3, 4, -2, -2, 0, -4, 2, -2, -2, 0, 0, -3, 2, 4, -2, 2, 0, -2, 4, 0, -2, 2, 1, -6, 3, 2, 0, -2, 2, -4, -2, -1, -2, 0, 0, 0, 4, 4, -2, -5, 0, -4, 2, -2, -2, 0, 0, 0, 4, 4, -1, -2, 1, -4, 3, 2, -1, 0, 2, 0, -2, 8, 0, 4, 2, -4, 0, 0, -2, 2, 2, 0, 4, 2, 2, -7, 0, 0, 6, 2, -6, 4, 0, 4, 2
OFFSET
1,8
LINKS
FORMULA
a(n) = A286529(n) - A000005(n) = A000005(n+A000005(n)) - A000005(n).
MATHEMATICA
Table[DivisorSigma[0, n + DivisorSigma[0, n]] - DivisorSigma[0, n], {n, 109}] (* Michael De Vlieger, May 21 2017 *)
PROG
(PARI) A286530(n) = (numdiv(n+numdiv(n)) - numdiv(n));
(Scheme) (define (A286530 n) (- (A286529 n) (A000005 n)))
(Python)
from sympy import divisor_count as d
def a(n): return d(n + d(n)) - d(n) # Indranil Ghosh, May 21 2017
CROSSREFS
Cf. A175304 (the positions of zeros).
Sequence in context: A348710 A048735 A102037 * A152857 A097946 A083926
KEYWORD
sign
AUTHOR
Antti Karttunen, May 21 2017
STATUS
approved