OFFSET
1,2
COMMENTS
Numerators of nonzero elements of A^2, written as rows using the least common denominator, where A[i,j] = 1/i if j <= i, 0 if j > i. [Edited by M. F. Hasler, Nov 05 2019]
LINKS
L. Bendersky, Sur la fonction gamma généralisée, Acta Math. 61 (1933), p. 263-322. See p. 295.
FORMULA
EXAMPLE
Triangle starts
1
3, 1
11, 5, 2
25, 13, 7, 3
137, 77, 47, 27, 12
147, 87, 57, 37, 22, 10
1089, 669, 459, 319, 214, 130, 60
2283, 1443, 1023, 743, 533, 365, 225, 105
7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280
... - Joerg Arndt, Mar 29 2013
MATHEMATICA
rows = 10;
M = MatrixPower[Table[If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}], 2];
T = Table[M[[n]]*LCM @@ Denominator[M[[n]]], {n, 1, rows}];
Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 05 2013, updated May 06 2022 *)
PROG
(PARI) A027446_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^2); vector(n, r, M[r, 1..r]*denominator(M[r, 1..r]))} \\ M. F. Hasler, Nov 05 2019
CROSSREFS
The row sums give A081528(n), n>=1.
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Edited by M. F. Hasler, Nov 05 2019
STATUS
approved