login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027446
Triangle read by rows: square of the lower triangular mean matrix.
10
1, 3, 1, 11, 5, 2, 25, 13, 7, 3, 137, 77, 47, 27, 12, 147, 87, 57, 37, 22, 10, 1089, 669, 459, 319, 214, 130, 60, 2283, 1443, 1023, 743, 533, 365, 225, 105, 7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280, 7381, 4861, 3601, 2761, 2131, 1627, 1207, 847, 532, 252
OFFSET
1,2
COMMENTS
Numerators of nonzero elements of A^2, written as rows using the least common denominator, where A[i,j] = 1/i if j <= i, 0 if j > i. [Edited by M. F. Hasler, Nov 05 2019]
LINKS
L. Bendersky, Sur la fonction gamma généralisée, Acta Math. 61 (1933), p. 263-322. See p. 295.
FORMULA
The rational matrix A^2, where the matrix A has elements a[i,j] = 1/A002024(i,j), is equal to A119947(i,j)/A119948(i,j).
a(i,j) = lcm(seq(A119948(i,m),m=1..i))*A119947(i,j)/A119948(i,j), 1 <= j =< i and zero otherwise.
EXAMPLE
Triangle starts
1
3, 1
11, 5, 2
25, 13, 7, 3
137, 77, 47, 27, 12
147, 87, 57, 37, 22, 10
1089, 669, 459, 319, 214, 130, 60
2283, 1443, 1023, 743, 533, 365, 225, 105
7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280
... - Joerg Arndt, Mar 29 2013
MATHEMATICA
rows = 10;
M = MatrixPower[Table[If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}], 2];
T = Table[M[[n]]*LCM @@ Denominator[M[[n]]], {n, 1, rows}];
Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 05 2013, updated May 06 2022 *)
PROG
(PARI) A027446_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^2); vector(n, r, M[r, 1..r]*denominator(M[r, 1..r]))} \\ M. F. Hasler, Nov 05 2019
CROSSREFS
The row sums give A081528(n), n>=1.
The column sequences give A025529, A027457, A027458 for j=1..3.
The diagonal sequences give A002944, A027449, A027450.
Sequence in context: A099001 A119947 A165674 * A027516 A092808 A343171
KEYWORD
nonn,tabl
EXTENSIONS
Edited by M. F. Hasler, Nov 05 2019
STATUS
approved