Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 May 06 2022 17:00:42
%S 1,3,1,11,5,2,25,13,7,3,137,77,47,27,12,147,87,57,37,22,10,1089,669,
%T 459,319,214,130,60,2283,1443,1023,743,533,365,225,105,7129,4609,3349,
%U 2509,1879,1375,955,595,280,7381,4861,3601,2761,2131,1627,1207,847,532,252
%N Triangle read by rows: square of the lower triangular mean matrix.
%C Numerators of nonzero elements of A^2, written as rows using the least common denominator, where A[i,j] = 1/i if j <= i, 0 if j > i. [Edited by _M. F. Hasler_, Nov 05 2019]
%H L. Bendersky, <a href="https://projecteuclid.org/journals/acta-mathematica/volume-61/issue-none/Sur-la-fonction-gamma-g%C3%A9n%C3%A9ralis%C3%A9e/10.1007/BF02547794.full">Sur la fonction gamma généralisée</a>, Acta Math. 61 (1933), p. 263-322. See p. 295.
%F The rational matrix A^2, where the matrix A has elements a[i,j] = 1/A002024(i,j), is equal to A119947(i,j)/A119948(i,j).
%F a(i,j) = lcm(seq(A119948(i,m),m=1..i))*A119947(i,j)/A119948(i,j), 1 <= j =< i and zero otherwise.
%e Triangle starts
%e 1
%e 3, 1
%e 11, 5, 2
%e 25, 13, 7, 3
%e 137, 77, 47, 27, 12
%e 147, 87, 57, 37, 22, 10
%e 1089, 669, 459, 319, 214, 130, 60
%e 2283, 1443, 1023, 743, 533, 365, 225, 105
%e 7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280
%e ... - _Joerg Arndt_, Mar 29 2013
%t rows = 10;
%t M = MatrixPower[Table[If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}], 2];
%t T = Table[M[[n]]*LCM @@ Denominator[M[[n]]], {n, 1, rows}];
%t Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Mar 05 2013, updated May 06 2022 *)
%o (PARI) A027446_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^2); vector(n,r,M[r,1..r]*denominator(M[r,1..r]))} \\ _M. F. Hasler_, Nov 05 2019
%Y The row sums give A081528(n), n>=1.
%Y The column sequences give A025529, A027457, A027458 for j=1..3.
%Y The diagonal sequences give A002944, A027449, A027450.
%Y Cf. A027447, A027448.
%K nonn,tabl
%O 1,2
%A _Olivier Gérard_
%E Edited by _M. F. Hasler_, Nov 05 2019