login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027448
Triangle read by rows: 4th power of the lower triangular mean matrix (M[i,j] = 1/i for i <= j).
11
1, 15, 1, 575, 65, 8, 5845, 865, 175, 27, 874853, 153713, 39743, 9963, 1728, 1009743, 200403, 60333, 19153, 5368, 1000, 389919909, 84873489, 28400079, 10419739, 3681784, 1105000, 216000, 3449575767, 807843807, 292420227
OFFSET
1,2
LINKS
Robert Israel, Table of n, a(n) for n = 1..10011 (rows 1 to 141, flattened)
FORMULA
Let M be the lower triangular matrix with entries M[i,j] = 1/i for 1<=j<=i, and B = M^4. Then a(i,j) = B(i,j)*lcm(denom(B(i,1)),...,denom(B(i,i))). - Robert Israel, Oct 05 2019
That is, the fractions in M^4 are written using the least common denominator before taking the numerators. - M. F. Hasler, Nov 05 2019
EXAMPLE
Table starts:
1
15 1
575 65 8
5845 865 175 27
874853 153713 39743 9963 1728
1009743 200403 60333 19153 5368 1000
MAPLE
Rows:= 10:
M:= Matrix(Rows, Rows, (i, j) -> `if`(i>=j, 1/i, 0)):
B:= M^4:
L:= [seq(ilcm(seq(denom(B[i, j]), j=1..i)), i=1..Rows)]:
seq(seq(B[i, j]*L[i], j=1..i), i=1..Rows); # Robert Israel, Oct 05 2019
MATHEMATICA
rows = 8; m = Table[ If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}]; m4 = m.m.m.m; Table[ fracs = m4[[i]]; nums = fracs // Numerator; dens = fracs // Denominator; lcm = LCM @@ dens; Table[ nums[[j]]*lcm/dens[[j]], {j, 1, i}], {i, 1, rows}] // Flatten (* Jean-François Alcover, Mar 05 2013 *)
PROG
(PARI) A027448_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^4); vector(n, r, M[r, 1..r]*denominator(M[r, 1..r]))} \\ M. F. Hasler, Nov 05 2019
CROSSREFS
Cf. A027446 (square of M), A027447 (cube of M).
Sequence in context: A049375 A049224 A223517 * A027518 A027539 A027479
KEYWORD
nonn,tabl
EXTENSIONS
Edited by Robert Israel, Oct 05 2019
STATUS
approved