login
A223517
Triangle T(n,k) represents the coefficients of (x^15*d/dx)^n, where n=1,2,3,...; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.
0
1, 15, 1, 435, 45, 1, 18705, 2415, 90, 1, 1066185, 158775, 7725, 150, 1, 75699135, 12497985, 722700, 18825, 225, 1, 6434426475, 1150525845, 75372885, 2379300, 38850, 315, 1, 637008221025, 121487010975, 8763187230, 318061485, 6380850, 71610, 420, 1
OFFSET
1,2
EXAMPLE
1;
15,1;
435,45,1;
18705,2415,90,1;
1066185,158775,7725,150,1;
75699135,12497985,722700,18825,225,1;
6434426475,1150525845,75372885,2379300,38850,315,1;
637008221025,121487010975,8763187230,318061485,6380850,71610,420,1;
MAPLE
b[0]:=f(x):
for j from 1 to 10 do
b[j]:=simplify(x^15*diff(b[j-1], x$1);
end do;
KEYWORD
nonn,easy,tabl
AUTHOR
Udita Katugampola, Mar 23 2013
STATUS
approved