%I #5 Mar 23 2013 14:57:28
%S 1,15,1,435,45,1,18705,2415,90,1,1066185,158775,7725,150,1,75699135,
%T 12497985,722700,18825,225,1,6434426475,1150525845,75372885,2379300,
%U 38850,315,1,637008221025,121487010975,8763187230,318061485,6380850,71610,420,1
%N Triangle T(n,k) represents the coefficients of (x^15*d/dx)^n, where n=1,2,3,...; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.
%e 1;
%e 15,1;
%e 435,45,1;
%e 18705,2415,90,1;
%e 1066185,158775,7725,150,1;
%e 75699135,12497985,722700,18825,225,1;
%e 6434426475,1150525845,75372885,2379300,38850,315,1;
%e 637008221025,121487010975,8763187230,318061485,6380850,71610,420,1;
%p b[0]:=f(x):
%p for j from 1 to 10 do
%p b[j]:=simplify(x^15*diff(b[j-1],x$1);
%p end do;
%Y Cf. A008277, A019538, A035342, A035469, A049029, A049385, A092082, A132056, A223511-A223522, A223168-A223172, A223523-A223532.
%K nonn,easy,tabl
%O 1,2
%A _Udita Katugampola_, Mar 23 2013