OFFSET
1,2
FORMULA
Let A be the matrix with A[i,j] = 1/i if j <= i, 0 if j > i. Then this table lists the numerators in A^3 when each row is written using the least common denominator. [Edited by M. F. Hasler, Nov 05 2019]
EXAMPLE
Triangle begins:
1;
7, 1;
85, 19, 4;
415, 115, 37, 9;
12019, 3799, 1489, 549, 144,
...
MATHEMATICA
rows = 9; m = Table[ If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}]; m3 = m.m.m; Table[ fracs = m3[[i]]; nums = fracs // Numerator; dens = fracs // Denominator; lcm = LCM @@ dens; Table[ nums[[j]]*lcm/dens[[j]], {j, 1, i}], {i, 1, rows}] // Flatten (* Jean-François Alcover, Mar 05 2013 *)
PROG
(PARI) tabl(nn) = {my(M = matrix(nn, nn, i, j, if (j<=i, 1/i, 0))^3); for (n=1, nn, my(row = M[n, 1..n]); print(denominator(row)*row))} \\ Michel Marcus, Nov 05 2019, edited by M. F. Hasler, Nov 05 2019
(PARI) A027447_row(n)=denominator(n=(matrix(n, n, i, j, (j<=i)/i)^3)[n, ])*n \\ M. F. Hasler, Nov 05 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
More terms from Michel Marcus, Nov 05 2019
STATUS
approved