login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027447
Triangle read by rows: cube of the lower triangular mean matrix.
13
1, 7, 1, 85, 19, 4, 415, 115, 37, 9, 12019, 3799, 1489, 549, 144, 13489, 4669, 2059, 919, 364, 100, 726301, 268921, 128431, 64171, 30676, 12700, 3600, 3144919, 1227199, 621139, 334699, 178669, 89125, 38025, 11025, 30300391, 12335311, 6527971, 3714811, 2134141, 1187125, 609625, 265825, 78400
OFFSET
1,2
FORMULA
Let A be the matrix with A[i,j] = 1/i if j <= i, 0 if j > i. Then this table lists the numerators in A^3 when each row is written using the least common denominator. [Edited by M. F. Hasler, Nov 05 2019]
EXAMPLE
Triangle begins:
1;
7, 1;
85, 19, 4;
415, 115, 37, 9;
12019, 3799, 1489, 549, 144,
...
MATHEMATICA
rows = 9; m = Table[ If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}]; m3 = m.m.m; Table[ fracs = m3[[i]]; nums = fracs // Numerator; dens = fracs // Denominator; lcm = LCM @@ dens; Table[ nums[[j]]*lcm/dens[[j]], {j, 1, i}], {i, 1, rows}] // Flatten (* Jean-François Alcover, Mar 05 2013 *)
PROG
(PARI) tabl(nn) = {my(M = matrix(nn, nn, i, j, if (j<=i, 1/i, 0))^3); for (n=1, nn, my(row = M[n, 1..n]); print(denominator(row)*row))} \\ Michel Marcus, Nov 05 2019, edited by M. F. Hasler, Nov 05 2019
(PARI) A027447_row(n)=denominator(n=(matrix(n, n, i, j, (j<=i)/i)^3)[n, ])*n \\ M. F. Hasler, Nov 05 2019
CROSSREFS
Sequence in context: A110788 A100254 A119935 * A027517 A092082 A013559
KEYWORD
nonn,tabl
EXTENSIONS
More terms from Michel Marcus, Nov 05 2019
STATUS
approved