login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: cube of the lower triangular mean matrix.
13

%I #27 Nov 06 2019 18:19:36

%S 1,7,1,85,19,4,415,115,37,9,12019,3799,1489,549,144,13489,4669,2059,

%T 919,364,100,726301,268921,128431,64171,30676,12700,3600,3144919,

%U 1227199,621139,334699,178669,89125,38025,11025,30300391,12335311,6527971,3714811,2134141,1187125,609625,265825,78400

%N Triangle read by rows: cube of the lower triangular mean matrix.

%F Let A be the matrix with A[i,j] = 1/i if j <= i, 0 if j > i. Then this table lists the numerators in A^3 when each row is written using the least common denominator. [Edited by _M. F. Hasler_, Nov 05 2019]

%e Triangle begins:

%e 1;

%e 7, 1;

%e 85, 19, 4;

%e 415, 115, 37, 9;

%e 12019, 3799, 1489, 549, 144,

%e ...

%t rows = 9; m = Table[ If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}]; m3 = m.m.m; Table[ fracs = m3[[i]]; nums = fracs // Numerator; dens = fracs // Denominator; lcm = LCM @@ dens; Table[ nums[[j]]*lcm/dens[[j]], {j, 1, i}], {i, 1, rows}] // Flatten (* _Jean-François Alcover_, Mar 05 2013 *)

%o (PARI) tabl(nn) = {my(M = matrix(nn, nn, i, j, if (j<=i, 1/i, 0))^3); for (n=1, nn, my(row = M[n,1..n]); print(denominator(row)*row))} \\ _Michel Marcus_, Nov 05 2019, edited by _M. F. Hasler_, Nov 05 2019

%o (PARI) A027447_row(n)=denominator(n=(matrix(n,n, i,j, (j<=i)/i)^3)[n,])*n \\ _M. F. Hasler_, Nov 05 2019

%Y Cf. A027446, A027448.

%K nonn,tabl

%O 1,2

%A _Olivier Gérard_

%E More terms from _Michel Marcus_, Nov 05 2019