login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017503
a(n) = (11*n + 9)^7.
12
4782969, 1280000000, 27512614111, 230539333248, 1174711139837, 4398046511104, 13348388671875, 34792782221696, 80798284478113, 171382426877952, 337931541778439, 627485170000000, 1107984764452581, 1874584905187328, 3057125241215467, 4828861374436224
OFFSET
0,1
FORMULA
a(n) = A001015(A017497(n)). - Michel Marcus, Nov 21 2013
From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (4782969 + 1241736248*x + 17406537243*x^2 + 46010574096*x^3 + 29404476791*x^4 + 4084486872*x^5 + 62747493*x^6 + 128*x^7)/(1-x)^8.
E.g.f.: (4782969 + 1275217031*x + 12478698540*x^2 + 25306117991*x^3 + 17188094770*x^4 + 4676276836*x^5 + 520838934*x^6 + 19487171*x^7)*exp(x). (End)
MAPLE
A017503:=n->(11*n+9)^7; seq(A017503(n), n=0..50); # Wesley Ivan Hurt, Nov 20 2013
MATHEMATICA
Table[(11n+9)^7, {n, 0, 50}] (* Wesley Ivan Hurt, Nov 20 2013 *)
LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {4782969, 1280000000, 27512614111, 230539333248, 1174711139837, 4398046511104, 13348388671875, 34792782221696}, 20] (* Harvey P. Dale, Nov 12 2022 *)
PROG
(PARI) vector(21, n, (11*n-2)^7) \\ G. C. Greubel, Oct 28 2019
(Magma) [(11*n+9)^7: n in [0..20]]; // G. C. Greubel, Oct 28 2019
(Sage) [(11*n+9)^7 for n in (0..20)] # G. C. Greubel, Oct 28 2019
(GAP) List([0..20], n-> (11*n+9)^7); # G. C. Greubel, Oct 28 2019
CROSSREFS
Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), A017502 (m=6), this sequence (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).
Subsequence of A001015.
Sequence in context: A017083 A017167 A017383 * A017635 A203655 A248587
KEYWORD
nonn,easy
STATUS
approved