login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017502
a(n) = (11*n + 9)^6.
12
531441, 64000000, 887503681, 5489031744, 22164361129, 68719476736, 177978515625, 404567235136, 832972004929, 1586874322944, 2839760855281, 4826809000000, 7858047974841, 12332795428864, 18755369578009
OFFSET
0,1
FORMULA
From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (531441 + 60279913*x + 450663942*x^2 + 601905542*x^3 + 157316657*x^4 + 4826361*x^5 + 64*x^6)/(1-x)^7.
E.g.f.: (531441 + 63468559*x + 380017561*x^2 + 502998210*x^3 + 219907820*x^4 + 35270169*x^5 + 1771561*x^6)*exp(x). (End)
MAPLE
seq((11*n+9)^6, n=0..20); # G. C. Greubel, Oct 28 2019
MATHEMATICA
(11Range[0, 20]+9)^6 (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {531441, 64000000, 887503681, 5489031744, 22164361129, 68719476736, 177978515625}, 20] (* Harvey P. Dale, Dec 06 2018 *)
PROG
(Maxima) makelist((11*n+9)^6, n, 0, 30); /* Martin Ettl, Oct 21 2012 */
(PARI) vector(21, n, (11*n-2)^6) \\ G. C. Greubel, Oct 28 2019
(Magma) [(11*n+9)^6: n in [0..20]]; // G. C. Greubel, Oct 28 2019
(Sage) [(11*n+9)^6 for n in (0..20)] # G. C. Greubel, Oct 28 2019
(GAP) List([0..20], n-> (11*n+9)^6); # G. C. Greubel, Oct 28 2019
CROSSREFS
Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), this sequence (m=6), A017503 (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).
Subsequence of A001014.
Sequence in context: A017082 A017166 A017382 * A017634 A203654 A016764
KEYWORD
nonn,easy
STATUS
approved