|
|
A017501
|
|
a(n) = (11*n + 9)^5.
|
|
12
|
|
|
59049, 3200000, 28629151, 130691232, 418195493, 1073741824, 2373046875, 4704270176, 8587340257, 14693280768, 23863536599, 37129300000, 55730836701, 81136812032, 115063617043, 159494694624
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
|
|
FORMULA
|
a(0)=59049, a(1)=3200000, a(2)=28629151, a(3)=130691232, a(4)=418195493, a(5)=1073741824, a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Harvey P. Dale, Jan 25 2013
G.f.: (59049 + 2845706*x + 10314886*x^2 + 5735346*x^3 + 371101*x^4 + 32*x^5) / (1-x)^6. - Harvey P. Dale, Jan 25 2013
E.g.f.: (59049 + 3140951*x + 11144100*x^2 + 9057455*x^3 + 2269355*x^4 + 161051*x^5)*exp(x). - G. C. Greubel, Oct 28 2019
|
|
MAPLE
|
seq((11*n+9)^5, n=0..20); # G. C. Greubel, Oct 28 2019
|
|
MATHEMATICA
|
(11*Range[0, 20]+9)^5 (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {59049, 3200000, 28629151, 130691232, 418195493, 1073741824}, 20] (* Harvey P. Dale, Jan 25 2013 *)
|
|
PROG
|
(PARI) vector(21, n, (11*n-2)^5) \\ G. C. Greubel, Oct 28 2019
(MAGMA) [(11*n+9)^5: n in [0..20]]; // G. C. Greubel, Oct 28 2019
(Sage) [(11*n+9)^5 for n in (0..20)] # G. C. Greubel, Oct 28 2019
(GAP) List([0..20], n-> (11*n+9)^5); # G. C. Greubel, Oct 28 2019
|
|
CROSSREFS
|
Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), this sequence (m=5), A017502 (m=6), A017503 (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).
Subsequence of A000584.
Sequence in context: A017081 A017165 A017381 * A017633 A203653 A016762
Adjacent sequences: A017498 A017499 A017500 * A017502 A017503 A017504
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|