login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017506
a(n) = (11*n + 9)^10.
12
3486784401, 10240000000000, 819628286980801, 17080198121677824, 174887470365513049, 1152921504606846976, 5631351470947265625, 22130157888803070976, 73742412689492826049, 215892499727278669824
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (3486784401 + 10201645371589*x + 707180060122856*x^2 + 8626911645462848*x^3 + 30396397449853370*x^4 + 36709149032258330*x^5 + 15541165896383216*x^6 + 2068692379779224*x^7 + 61886937611357*x^8 + 137858480585*x^9 + 1024*x^10)/(1-x)^11.
E.g.f.: (3486784401 + 10236513215599*x + 399575886882601*x^2 + 2442004962325170*x^3 + 4643478795311290*x^4 + 3676175396995563*x^5 + 1399671561315027*x^6 + 274137726759600*x^7 + 27874157090835*x^8 + 1379399399235*x^9 + 25937424601*x^10)*exp(x). (End)
MAPLE
seq((11*n+9)^10, n=0..20); # G. C. Greubel, Oct 28 2019
MATHEMATICA
(11*Range[20] -2)^10 (* G. C. Greubel, Oct 28 2019 *)
LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {3486784401, 10240000000000, 819628286980801, 17080198121677824, 174887470365513049, 1152921504606846976, 5631351470947265625, 22130157888803070976, 73742412689492826049, 215892499727278669824, 569468379011812486801}, 30] (* Harvey P. Dale, Jul 14 2021 *)
PROG
(PARI) vector(21, n, (11*n-2)^10) \\ G. C. Greubel, Oct 28 2019
(Magma) [(11*n+9)^10: n in [0..20]]; // G. C. Greubel, Oct 28 2019
(Sage) [(11*n+9)^10 for n in (0..20)] # G. C. Greubel, Oct 28 2019
(GAP) List([0..20], n-> (11*n+9)^10); # G. C. Greubel, Oct 28 2019
CROSSREFS
Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), A017502 (m=6), A017503 (m=7), A017504 (m=8), A017505 (m=9), this sequence (m=10), A017607 (m=11), A017508 (m=12).
Subsequence of A008454.
Sequence in context: A017086 A017170 A017386 * A017638 A221557 A217003
KEYWORD
nonn,easy
STATUS
approved