login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (11*n + 9)^6.
12

%I #23 Sep 08 2022 08:44:42

%S 531441,64000000,887503681,5489031744,22164361129,68719476736,

%T 177978515625,404567235136,832972004929,1586874322944,2839760855281,

%U 4826809000000,7858047974841,12332795428864,18755369578009

%N a(n) = (11*n + 9)^6.

%H G. C. Greubel, <a href="/A017502/b017502.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).

%F From _G. C. Greubel_, Oct 28 2019: (Start)

%F G.f.: (531441 + 60279913*x + 450663942*x^2 + 601905542*x^3 + 157316657*x^4 + 4826361*x^5 + 64*x^6)/(1-x)^7.

%F E.g.f.: (531441 + 63468559*x + 380017561*x^2 + 502998210*x^3 + 219907820*x^4 + 35270169*x^5 + 1771561*x^6)*exp(x). (End)

%p seq((11*n+9)^6, n=0..20); # _G. C. Greubel_, Oct 28 2019

%t (11Range[0,20]+9)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {531441,64000000,887503681,5489031744,22164361129,68719476736, 177978515625}, 20] (* _Harvey P. Dale_, Dec 06 2018 *)

%o (Maxima) makelist((11*n+9)^6, n, 0, 30); /* _Martin Ettl_, Oct 21 2012 */

%o (PARI) vector(21, n, (11*n-2)^6) \\ _G. C. Greubel_, Oct 28 2019

%o (Magma) [(11*n+9)^6: n in [0..20]]; // _G. C. Greubel_, Oct 28 2019

%o (Sage) [(11*n+9)^6 for n in (0..20)] # _G. C. Greubel_, Oct 28 2019

%o (GAP) List([0..20], n-> (11*n+9)^6); # _G. C. Greubel_, Oct 28 2019

%Y Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), this sequence (m=6), A017503 (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).

%Y Subsequence of A001014.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_