login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (11*n + 9)^7.
12

%I #23 Nov 12 2022 17:50:31

%S 4782969,1280000000,27512614111,230539333248,1174711139837,

%T 4398046511104,13348388671875,34792782221696,80798284478113,

%U 171382426877952,337931541778439,627485170000000,1107984764452581,1874584905187328,3057125241215467,4828861374436224

%N a(n) = (11*n + 9)^7.

%H G. C. Greubel, <a href="/A017503/b017503.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1).

%F a(n) = A001015(A017497(n)). - _Michel Marcus_, Nov 21 2013

%F From _G. C. Greubel_, Oct 28 2019: (Start)

%F G.f.: (4782969 + 1241736248*x + 17406537243*x^2 + 46010574096*x^3 + 29404476791*x^4 + 4084486872*x^5 + 62747493*x^6 + 128*x^7)/(1-x)^8.

%F E.g.f.: (4782969 + 1275217031*x + 12478698540*x^2 + 25306117991*x^3 + 17188094770*x^4 + 4676276836*x^5 + 520838934*x^6 + 19487171*x^7)*exp(x). (End)

%p A017503:=n->(11*n+9)^7; seq(A017503(n), n=0..50); # _Wesley Ivan Hurt_, Nov 20 2013

%t Table[(11n+9)^7, {n,0,50}] (* _Wesley Ivan Hurt_, Nov 20 2013 *)

%t LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{4782969,1280000000,27512614111,230539333248,1174711139837,4398046511104,13348388671875,34792782221696},20] (* _Harvey P. Dale_, Nov 12 2022 *)

%o (PARI) vector(21, n, (11*n-2)^7) \\ _G. C. Greubel_, Oct 28 2019

%o (Magma) [(11*n+9)^7: n in [0..20]]; // _G. C. Greubel_, Oct 28 2019

%o (Sage) [(11*n+9)^7 for n in (0..20)] # _G. C. Greubel_, Oct 28 2019

%o (GAP) List([0..20], n-> (11*n+9)^7); # _G. C. Greubel_, Oct 28 2019

%Y Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), A017502 (m=6), this sequence (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).

%Y Subsequence of A001015.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_