OFFSET
1,1
LINKS
K. D. Bajpai and Chai Wah Wu, Table of n, a(n) for n = 1..10000 n = 1..42 from K. D. Bajpai.
EXAMPLE
a(2) = 6353029 is prime. Next three primes are 6353033, 6353051 and 6353071. Their sum = 6353029 + 6353033 + 6353051 + 6353071 = 25412184 = 294^3.
a(3) = 8039333 is prime. Next three primes are 8039359, 8039363 and 8039377. Their sum = 8039333 + 8039359 + 8039363 + 8039377 = 32157432 = 318^3.
MATHEMATICA
t = {}; p = 2; q = 3; r = 5; Do[v = NextPrime[r]; If[IntegerQ[(p + q + r + v)^(1/3)], AppendTo[t, p]; Print[p]]; p = q; q = r; r = v, {5*10^8}]; t
Select[Partition[Prime[Range[6*10^7]], 4, 1], IntegerQ[Surd[Total[#], 3]] &] [[All, 1]] (* Harvey P. Dale, Oct 07 2016 *)
PROG
(PARI) lista(nn) = {vp = primes(nn); for (i=1, #vp - 3, if (ispower(vp[i]+vp[i+1]+vp[i+2]+vp[i+3], 3), print1(vp[i], ", ")); ); } \\ Michel Marcus, Oct 24 2014
(Python)
from sympy import nextprime, prevprime
A248587_list = []
for i in range(3, 10**6):
n = i**3
p3 = prevprime(n//4)
p2, p4 = prevprime(p3), nextprime(p3)
p1 = prevprime(p2)
q = p1+p2+p3+p4
while q <= n:
if q == n:
A248587_list.append(p1)
p1, p2, p3, p4 = p2, p3, p4, nextprime(p4)
q = p1+p2+p3+p4 # Chai Wah Wu, Dec 31 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Oct 09 2014
STATUS
approved