login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248590
Least positive integer m such that prime(m) == 1 (mod m + n).
3
3, 4, 19, 10, 5, 6, 13, 15, 7, 8, 31, 17, 9, 19, 20, 38, 22, 10, 11, 24, 78, 80, 25, 12, 28, 30, 13, 14, 599, 97, 15, 31, 32, 178, 33, 16, 102, 104, 35, 108, 17, 18, 38, 39, 361, 40, 19, 41, 73, 20, 21, 43, 45, 78, 134, 22, 391, 47, 23, 84
OFFSET
1,1
COMMENTS
Conjecture: (i) a(n) exists for any n > 0. Moreover, a(n) < n*(n-1) if n > 3.
(ii) For any n > 0, there is a positive integer m such that prime(m) == -1 (mod m + n). Moreover, we may require m < n*(n-1) if n > 1.
EXAMPLE
a(3) = 19 since prime(19) = 67 == 1 (mod 19 + 3).
MATHEMATICA
Do[m=1; Label[aa]; If[Mod[Prime[m]-1, m+n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 09 2014
STATUS
approved