login
A017445
a(n) = (11*n + 4)^9.
12
262144, 38443359375, 5429503678976, 129961739795077, 1352605460594688, 8662995818654939, 40353607000000000, 150094635296999121, 472161363286556672, 1304773183829244583, 3251948521156637184
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (262144 +38440737935*x +5045081881706*x^2 +77396622719912*x^3 +292702580123078*x^4 +341752101417866*x^5 +125993865875030*x^6 +12525368984504*x^7 +197955754298*x^8 +40353607*x^9)/(1-x)^10.
E.g.f.: (262144 +38443097231*x +2676308611185*x^2 +18964759762355*x^3 +36049239596370*x^4 +26212359111477*x^5 +8537070967194*x^6 +1316670195786*x^7 +92603036592*x^8 +2357947691*x^9)*exp(x). (End)
MAPLE
seq((11*n+4)^9, n=0..20); # G. C. Greubel, Sep 18 2019
MATHEMATICA
(11*Range[20] -7)^9 (* G. C. Greubel, Sep 18 2019 *)
PROG
(PARI) vector(20, n, (11*n-7)^9) \\ G. C. Greubel, Sep 18 2019
(Magma) [(11*n+4)^9: n in [0..20]]; // G. C. Greubel, Sep 18 2019
(Sage) [(11*n+4)^9 for n in (0..20)] # G. C. Greubel, Sep 18 2019
(GAP) List([0..20], n-> (11*n+4)^9); # G. C. Greubel, Sep 18 2019
CROSSREFS
Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), this sequence (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).
Sequence in context: A017121 A017217 A017325 * A017577 A051441 A351315
KEYWORD
nonn,easy
STATUS
approved