The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A017440 a(n) = (11*n + 4)^4. 12
 256, 50625, 456976, 1874161, 5308416, 12117361, 24010000, 43046721, 71639296, 112550881, 168896016, 244140625, 342102016, 466948881, 623201296, 815730721, 1049760000, 1330863361, 1664966416, 2058346161, 2517630976, 3049800625, 3662186256, 4362470401, 5158686976, 6059221281 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA From G. C. Greubel, Sep 18 2019: (Start) G.f.: (256 +49345*x +206411*x^2 -92971*x^3 +2401*x^4)/(1-x)^5. E.g.f.: (256 + 50369*x + 177991*x^2 + 109142*x^3 + 14641*x^4)*exp(x). (End) MAPLE seq((11*n + 4)^4, n=0..30); # G. C. Greubel, Sep 18 2019 MATHEMATICA (11*Range[30] -7)^4 (* G. C. Greubel, Sep 18 2019 *) PROG (PARI) vector(30, n, (11*n-7)^4) \\ G. C. Greubel, Sep 18 2019 (MAGMA) [(11*n+4)^4: n in [0..30]]; // G. C. Greubel, Sep 18 2019 (Sage) [(11*n+4)^4 for n in (0..30)] # G. C. Greubel, Sep 18 2019 (GAP) List([0..30], n-> (11*n+4)^4); # G. C. Greubel, Sep 18 2019 CROSSREFS Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), this sequence (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12). Sequence in context: A181251 A132637 A114850 * A237068 A204302 A264096 Adjacent sequences:  A017437 A017438 A017439 * A017441 A017442 A017443 KEYWORD nonn,easy AUTHOR EXTENSIONS Terms a(20) onward added by G. C. Greubel, Sep 18 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 04:30 EST 2022. Contains 350654 sequences. (Running on oeis4.)