login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017444
a(n) = (11*n + 4)^8.
12
65536, 2562890625, 208827064576, 3512479453921, 28179280429056, 146830437604321, 576480100000000, 1853020188851841, 5132188731375616, 12667700813876161, 28525864220672256, 59604644775390625, 117033789351264256, 218041257467152161, 388379855336079616
OFFSET
0,1
LINKS
FORMULA
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (65536 +2562300801*x +185763408247*x^2 +1725294430213*x^3 +3869465113539*x^4 +2447616620803*x^5 +401274300613*x^6 +10968077367*x^7 +5764801*x^8)/(1-x)^9.
E.g.f.: (65536 +2562825089*x +101850674431*x^2 +482281144422*x^3 +640503062661*x^4 +324861447834*x^5 +70908500586*x^6 +6625638140*x^7 +214358881*x^8)*exp(x). (End)
MAPLE
seq((11*n+4)^8, n=0..20); # G. C. Greubel, Sep 18 2019
MATHEMATICA
(11*Range[0, 20]+4)^8 (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {65536, 2562890625, 208827064576, 3512479453921, 28179280429056, 146830437604321, 576480100000000, 1853020188851841, 5132188731375616}, 20] (* Harvey P. Dale, Sep 21 2016 *)
PROG
(PARI) vector(20, n, (11*n-7)^8) \\ G. C. Greubel, Sep 18 2019
(Magma) [(11*n+4)^8: n in [0..20]]; // G. C. Greubel, Sep 18 2019
(Sage) [(11*n+4)^8 for n in (0..20)] # G. C. Greubel, Sep 18 2019
(GAP) List([0..20], n-> (11*n+4)^8); # G. C. Greubel, Sep 18 2019
CROSSREFS
Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), this sequence (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).
Sequence in context: A017120 A017216 A017324 * A017576 A013881 A027747
KEYWORD
nonn,easy
EXTENSIONS
Terms a(12) onward added by G. C. Greubel, Sep 18 2019
STATUS
approved