login
A017444
a(n) = (11*n + 4)^8.
12
65536, 2562890625, 208827064576, 3512479453921, 28179280429056, 146830437604321, 576480100000000, 1853020188851841, 5132188731375616, 12667700813876161, 28525864220672256, 59604644775390625, 117033789351264256, 218041257467152161, 388379855336079616
OFFSET
0,1
LINKS
FORMULA
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (65536 +2562300801*x +185763408247*x^2 +1725294430213*x^3 +3869465113539*x^4 +2447616620803*x^5 +401274300613*x^6 +10968077367*x^7 +5764801*x^8)/(1-x)^9.
E.g.f.: (65536 +2562825089*x +101850674431*x^2 +482281144422*x^3 +640503062661*x^4 +324861447834*x^5 +70908500586*x^6 +6625638140*x^7 +214358881*x^8)*exp(x). (End)
MAPLE
seq((11*n+4)^8, n=0..20); # G. C. Greubel, Sep 18 2019
MATHEMATICA
(11*Range[0, 20]+4)^8 (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {65536, 2562890625, 208827064576, 3512479453921, 28179280429056, 146830437604321, 576480100000000, 1853020188851841, 5132188731375616}, 20] (* Harvey P. Dale, Sep 21 2016 *)
PROG
(PARI) vector(20, n, (11*n-7)^8) \\ G. C. Greubel, Sep 18 2019
(Magma) [(11*n+4)^8: n in [0..20]]; // G. C. Greubel, Sep 18 2019
(Sage) [(11*n+4)^8 for n in (0..20)] # G. C. Greubel, Sep 18 2019
(GAP) List([0..20], n-> (11*n+4)^8); # G. C. Greubel, Sep 18 2019
CROSSREFS
Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), this sequence (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).
Sequence in context: A017120 A017216 A017324 * A017576 A013881 A027747
KEYWORD
nonn,easy
EXTENSIONS
Terms a(12) onward added by G. C. Greubel, Sep 18 2019
STATUS
approved