login
A017439
a(n) = (11*n + 4)^3.
12
64, 3375, 17576, 50653, 110592, 205379, 343000, 531441, 778688, 1092727, 1481544, 1953125, 2515456, 3176523, 3944312, 4826809, 5832000, 6967871, 8242408, 9663597, 11239424, 12977875, 14886936, 16974593, 19248832, 21717639, 24389000, 27270901, 30371328, 33698267, 37259704, 41063625
OFFSET
0,1
FORMULA
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (64 + 3119*x + 4460*x^2 + 343*x^3)/(1-x)^4.
E.g.f.: (64 + 3311*x + 5445*x^2 + 1331*x^3)*exp(x). (End)
MAPLE
seq((11*n + 4)^3, n=0..40); # G. C. Greubel, Sep 18 2019
MATHEMATICA
(11*Range[40] -7)^3 (* G. C. Greubel, Sep 18 2019 *)
LinearRecurrence[{4, -6, 4, -1}, {64, 3375, 17576, 50653}, 40] (* Harvey P. Dale, Feb 10 2024 *)
PROG
(PARI) vector(40, n, (11*n-7)^3) \\ G. C. Greubel, Sep 18 2019
(Magma) [(11*n + 4)^3: n in [0..40]]; // G. C. Greubel, Sep 18 2019
(Sage) [(11*n + 4)^3 for n in (0..40)] # G. C. Greubel, Sep 18 2019
(GAP) List([0..40], n-> (11*n + 4)^3); # G. C. Greubel, Sep 18 2019
CROSSREFS
Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), this sequence (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).
Sequence in context: A299358 A299179 A299941 * A220744 A298194 A299088
KEYWORD
nonn,easy
EXTENSIONS
Terms a(23) onward added by G. C. Greubel, Sep 18 2019
STATUS
approved