login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017448
a(n) = (11*n + 4)^12.
12
16777216, 129746337890625, 95428956661682176, 6582952005840035281, 149587343098087735296, 1779197418239532716881, 13841287201000000000000, 79766443076872509863361, 367666387654882241806336, 1425760886846178945447841
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (16777216 +129746119786817*x +93742255577726899*x^2 +5352495778795351967*x^3 +71415318201137477061*x^4 +320832301424673327498*x^5 +564873972371695167390*x^6 +409344222142040360670*x^7 +118792245587080463178*x^8 +12267852707472004709*x^9 +338777054867330431*x^10 +1156651444692563*x^11 +13841287201*x^12)/(1-x)^13.
E.g.f.: (16777216 +129746321113409*x +47584732001339071*x^2 +1049509062475313902*x^3 +5159482909556787581*x^4 +9134471516437918728*x^5 +7332895074707269012*x^6 +3022504298573111220*x^7 +683555776881033507*x^8 +86991917430662915*x^9 +6131633113101001*x^10 +220831233052914*x^11 +3138428376721*x^12)*exp(x). (End)
a(n) = 13*a(n-1) - 78*a(n-2) + 286*a(n-3) - 715*a(n-4) + 1287*a(n-5) - 1716*a(n-6) + 1716*a(n-7) - 1287*a(n-8) + 715*a(n-9) - 286*a(n-10) + 78*a(n-11) - 13*a(n-12) + a(n-13). - Wesley Ivan Hurt, Mar 18 2023
MAPLE
seq((11*n+4)^12, n=0..20); # G. C. Greubel, Sep 18 2019
MATHEMATICA
(11Range[0, 20]+4)^12 (* Harvey P. Dale, Apr 18 2011 *)
PROG
(Magma) [(11*n+4)^12: n in [0..25]]; // Vincenzo Librandi, Apr 19 2011
(PARI) vector(20, n, (11*n-7)^12) \\ G. C. Greubel, Sep 18 2019
(Sage) [(11*n+4)^12 for n in (0..20)] # G. C. Greubel, Sep 18 2019
(GAP) List([0..20], n-> (11*n+4)^12); # G. C. Greubel, Sep 18 2019
CROSSREFS
Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), this sequence (m=12).
Sequence in context: A114967 A017220 A017328 * A017580 A017711 A013972
KEYWORD
nonn,easy
STATUS
approved