login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A017441
a(n) = (11*n + 4)^5.
12
1024, 759375, 11881376, 69343957, 254803968, 714924299, 1680700000, 3486784401, 6590815232, 11592740743, 19254145824, 30517578125, 46525874176, 68641485507, 98465804768, 137858491849, 188956800000
OFFSET
0,1
FORMULA
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (1024 +753231*x +7340486*x^2 +9425846*x^3 +1788726*x^4 +16807*x^5 )/(1-x)^6.
E.g.f.: (1024 +758351*x +5181825*x^2 +5996155*x^3 +1903330*x^4 +161051*x^5)*exp(x). (End)
MAPLE
seq((11*n+4)^5, n=0..20); # G. C. Greubel, Sep 18 2019
MATHEMATICA
(11 Range[0, 20]+4)^5 (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1024, 759375, 11881376, 69343957, 254803968, 714924299}, 20] (* Harvey P. Dale, Jan 30 2017 *)
PROG
(PARI) vector(20, n, (11*n-7)^5) \\ G. C. Greubel, Sep 18 2019
(Magma) [(11*n+4)^5: n in [0..20]]; // G. C. Greubel, Sep 18 2019
(Sage) [(11*n+4)^5 for n in (0..20)] # G. C. Greubel, Sep 18 2019
(GAP) List([0..20], n-> (11*n+4)^5); # G. C. Greubel, Sep 18 2019
CROSSREFS
Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), this sequence (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).
Sequence in context: A221092 A017321 A223267 * A222102 A229104 A223200
KEYWORD
nonn,easy
STATUS
approved