login
A017443
a(n) = (11*n + 4)^7.
12
16384, 170859375, 8031810176, 94931877133, 587068342272, 2488651484819, 8235430000000, 22876792454961, 55784660123648, 122987386542487, 250226879128704, 476837158203125, 860542568759296, 1483273860320763
OFFSET
0,1
FORMULA
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (16384 +170728303*x +6665393928*x^2 +35460540721*x^3 +42937032016*x^4 +12375175257*x^5 +605631688*x^6 +823543*x^7)/(1-x)^8.
E.g.f.: (16384 +170842991*x +3845053905*x^2 +11891501391*x^3 +10618678070*x^4 +3526372696*x^5 +458834299*x^6 +19487171*x^7)*exp(x). (End)
MAPLE
seq((11*n+4)^7, n=0..20); # G. C. Greubel, Sep 18 2019
MATHEMATICA
(11*Range[40] -7)^7 (* G. C. Greubel, Sep 18 2019 *)
LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {16384, 170859375, 8031810176, 94931877133, 587068342272, 2488651484819, 8235430000000, 22876792454961}, 20] (* Harvey P. Dale, Dec 29 2024 *)
PROG
(PARI) vector(20, n, (11*n-7)^7) \\ G. C. Greubel, Sep 18 2019
(Magma) [(11*n+4)^7: n in [0..20]]; // G. C. Greubel, Sep 18 2019
(Sage) [(11*n+4)^7 for n in (0..20)] # G. C. Greubel, Sep 18 2019
(GAP) List([0..20], n-> (11*n+4)^7); # G. C. Greubel, Sep 18 2019
CROSSREFS
Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), this sequence (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).
Sequence in context: A017119 A017215 A017323 * A017575 A223806 A223584
KEYWORD
nonn,easy
STATUS
approved