login
A017323
a(n) = (10*n + 4)^7.
1
16384, 105413504, 4586471424, 52523350144, 319277809664, 1338925209984, 4398046511104, 12151280273024, 29509034655744, 64847759419264, 131593177923584, 250226879128704, 450766669594624, 775771085481344
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (8, -28, 56, -70, 56, -28, 8, -1).
FORMULA
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8); a(0)=16384, a(1)=105413504, a(2)=4586471424, a(3)=52523350144, a(4)=319277809664, a(5)=1338925209984, a(6)=4398046511104, a(7)=12151280273024. - Harvey P. Dale, Aug 26 2015
MAPLE
A017323:=n->(10*n+4)^7: seq(A017323(n), n=0..30); # Wesley Ivan Hurt, Jan 28 2017
MATHEMATICA
(10*Range[0, 20]+4)^7 (* or *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {16384, 105413504, 4586471424, 52523350144, 319277809664, 1338925209984, 4398046511104, 12151280273024}, 20] (* Harvey P. Dale, Aug 26 2015 *)
PROG
(Magma) [(10*n+4)^7: n in [0..20] ]; // Vincenzo Librandi, Aug 01 2011
(PARI) a(n)=(10*n+4)^7 \\ Charles R Greathouse IV, Jan 29 2017
CROSSREFS
Sequence in context: A269295 A017119 A017215 * A017443 A017575 A223806
KEYWORD
nonn,easy
STATUS
approved