login
a(n) = (11*n + 4)^3.
12

%I #12 Feb 10 2024 14:02:47

%S 64,3375,17576,50653,110592,205379,343000,531441,778688,1092727,

%T 1481544,1953125,2515456,3176523,3944312,4826809,5832000,6967871,

%U 8242408,9663597,11239424,12977875,14886936,16974593,19248832,21717639,24389000,27270901,30371328,33698267,37259704,41063625

%N a(n) = (11*n + 4)^3.

%H G. C. Greubel, <a href="/A017439/b017439.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F From _G. C. Greubel_, Sep 18 2019: (Start)

%F G.f.: (64 + 3119*x + 4460*x^2 + 343*x^3)/(1-x)^4.

%F E.g.f.: (64 + 3311*x + 5445*x^2 + 1331*x^3)*exp(x). (End)

%p seq((11*n + 4)^3, n=0..40); # _G. C. Greubel_, Sep 18 2019

%t (11*Range[40] -7)^3 (* _G. C. Greubel_, Sep 18 2019 *)

%t LinearRecurrence[{4,-6,4,-1},{64,3375,17576,50653},40] (* _Harvey P. Dale_, Feb 10 2024 *)

%o (PARI) vector(40, n, (11*n-7)^3) \\ _G. C. Greubel_, Sep 18 2019

%o (Magma) [(11*n + 4)^3: n in [0..40]]; // _G. C. Greubel_, Sep 18 2019

%o (Sage) [(11*n + 4)^3 for n in (0..40)] # _G. C. Greubel_, Sep 18 2019

%o (GAP) List([0..40], n-> (11*n + 4)^3); # _G. C. Greubel_, Sep 18 2019

%Y Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), this sequence (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_

%E Terms a(23) onward added by _G. C. Greubel_, Sep 18 2019