login
a(n) = (11*n + 4)^8.
12

%I #10 Sep 08 2022 08:44:42

%S 65536,2562890625,208827064576,3512479453921,28179280429056,

%T 146830437604321,576480100000000,1853020188851841,5132188731375616,

%U 12667700813876161,28525864220672256,59604644775390625,117033789351264256,218041257467152161,388379855336079616

%N a(n) = (11*n + 4)^8.

%H G. C. Greubel, <a href="/A017444/b017444.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).

%F From _G. C. Greubel_, Sep 18 2019: (Start)

%F G.f.: (65536 +2562300801*x +185763408247*x^2 +1725294430213*x^3 +3869465113539*x^4 +2447616620803*x^5 +401274300613*x^6 +10968077367*x^7 +5764801*x^8)/(1-x)^9.

%F E.g.f.: (65536 +2562825089*x +101850674431*x^2 +482281144422*x^3 +640503062661*x^4 +324861447834*x^5 +70908500586*x^6 +6625638140*x^7 +214358881*x^8)*exp(x). (End)

%p seq((11*n+4)^8, n=0..20); # _G. C. Greubel_, Sep 18 2019

%t (11*Range[0,20]+4)^8 (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36, -9,1}, {65536,2562890625,208827064576,3512479453921, 28179280429056, 146830437604321,576480100000000,1853020188851841,5132188731375616}, 20] (* _Harvey P. Dale_, Sep 21 2016 *)

%o (PARI) vector(20, n, (11*n-7)^8) \\ _G. C. Greubel_, Sep 18 2019

%o (Magma) [(11*n+4)^8: n in [0..20]]; // _G. C. Greubel_, Sep 18 2019

%o (Sage) [(11*n+4)^8 for n in (0..20)] # _G. C. Greubel_, Sep 18 2019

%o (GAP) List([0..20], n-> (11*n+4)^8); # _G. C. Greubel_, Sep 18 2019

%Y Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), this sequence (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_

%E Terms a(12) onward added by _G. C. Greubel_, Sep 18 2019