Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #11 Sep 08 2022 08:44:42
%S 262144,38443359375,5429503678976,129961739795077,1352605460594688,
%T 8662995818654939,40353607000000000,150094635296999121,
%U 472161363286556672,1304773183829244583,3251948521156637184
%N a(n) = (11*n + 4)^9.
%H G. C. Greubel, <a href="/A017445/b017445.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
%F From _G. C. Greubel_, Sep 18 2019: (Start)
%F G.f.: (262144 +38440737935*x +5045081881706*x^2 +77396622719912*x^3 +292702580123078*x^4 +341752101417866*x^5 +125993865875030*x^6 +12525368984504*x^7 +197955754298*x^8 +40353607*x^9)/(1-x)^10.
%F E.g.f.: (262144 +38443097231*x +2676308611185*x^2 +18964759762355*x^3 +36049239596370*x^4 +26212359111477*x^5 +8537070967194*x^6 +1316670195786*x^7 +92603036592*x^8 +2357947691*x^9)*exp(x). (End)
%p seq((11*n+4)^9, n=0..20); # _G. C. Greubel_, Sep 18 2019
%t (11*Range[20] -7)^9 (* _G. C. Greubel_, Sep 18 2019 *)
%o (PARI) vector(20, n, (11*n-7)^9) \\ _G. C. Greubel_, Sep 18 2019
%o (Magma) [(11*n+4)^9: n in [0..20]]; // _G. C. Greubel_, Sep 18 2019
%o (Sage) [(11*n+4)^9 for n in (0..20)] # _G. C. Greubel_, Sep 18 2019
%o (GAP) List([0..20], n-> (11*n+4)^9); # _G. C. Greubel_, Sep 18 2019
%Y Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), this sequence (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_