login
A244630
a(n) = 17*n^2.
15
0, 17, 68, 153, 272, 425, 612, 833, 1088, 1377, 1700, 2057, 2448, 2873, 3332, 3825, 4352, 4913, 5508, 6137, 6800, 7497, 8228, 8993, 9792, 10625, 11492, 12393, 13328, 14297, 15300, 16337, 17408, 18513, 19652, 20825, 22032, 23273, 24548, 25857, 27200
OFFSET
0,2
COMMENTS
First bisection of A195047. - Bruno Berselli, Jul 03 2014
Norms of purely imaginary numbers in Z[sqrt(-17)] (for example, 3*sqrt(-17) has norm 153). - Alonso del Arte, Jun 23 2018
FORMULA
G.f.: 17*x*(1 + x)/(1 - x)^3. [corrected by Bruno Berselli, Jul 03 2014]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = 17*A000290(n). - Omar E. Pol, Jul 03 2014
a(n) = a(-n). - Muniru A Asiru, Jun 29 2018
MAPLE
seq(17*n^2, n=0..45); # Muniru A Asiru, Jun 29 2018
MATHEMATICA
Table[17 n^2, {n, 0, 40}]
PROG
(Magma) [17*n^2: n in [0..40]];
(PARI) a(n)=17*n^2 \\ Charles R Greathouse IV, Oct 07 2015
(GAP) List([0..45], n->17*n^2); # Muniru A Asiru, Jun 29 2018
(Scala) for (i <- 0 to 50) yield 17 * (i * i) // Alonso del Arte, Jun 29 2018
CROSSREFS
Cf. A195047.
Cf. similar sequences of the type k*n^2: A000290 (k = 1), A001105 (k = 2), A033428 (k = 3), A016742 (k = 4), A033429 (k = 5), A033581 (k = 6), A033582 (k = 7), A139098 (k = 8), A016766 (k = 9), A033583 (k = 10), A033584 (k = 11), A135453 (k = 12), A152742 (k = 13), A144555 (k = 14), A064761 (k = 15), A016802 (k = 16), this sequence (k = 17), A195321 (k = 18), A244631 (k = 19), A195322 (k = 20), A064762 (k = 21), A195323 (k = 22), A244632 (k = 23), A195824 (k = 24), A016850 (k = 25), A244633 (k = 26), A244634 (k = 27), A064763 (k = 28), A244635 (k = 29), A244636 (k = 30).
Sequence in context: A141940 A294516 A209078 * A248894 A041556 A041558
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jul 03 2014
STATUS
approved