The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A016766 a(n) = (3*n)^2. 21
 0, 9, 36, 81, 144, 225, 324, 441, 576, 729, 900, 1089, 1296, 1521, 1764, 2025, 2304, 2601, 2916, 3249, 3600, 3969, 4356, 4761, 5184, 5625, 6084, 6561, 7056, 7569, 8100, 8649, 9216, 9801, 10404, 11025, 11664, 12321, 12996, 13689, 14400, 15129, 15876 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of edges of the complete tripartite graph of order 6n, K_n, n, 4n. - Roberto E. Martinez II, Jan 07 2002 Area of a square with side 3n. - Wesley Ivan Hurt, Sep 24 2014 Right-hand side of the binomial coefficient identity Sum_{k = 0..3*n} (-1)^(n+k+1)* binomial(3*n,k)*binomial(3*n + k,k)*(3*n - k) = a(n). - Peter Bala, Jan 12 2022 LINKS Ivan Panchenko, Table of n, a(n) for n = 0..200 John Elias, Illustration of initial terms Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = 9*n^2 = 9 * A000290(n). - Omar E. Pol, Dec 11 2008 a(n) = 3 * A033428(n). - Omar E. Pol, Dec 13 2008 a(n) = a(n-1) + 9*(2*n-1) for n>0, a(0)=0. - Vincenzo Librandi, Nov 19 2010 From Wesley Ivan Hurt, Sep 24 2014: (Start) G.f.: 9*x*(1 + x)/(1 - x)^3. a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n>3. a(n) = A000290(A008585(n)). (End) From Amiram Eldar, Jan 25 2021: (Start) Sum_{n>=1} 1/a(n) = Pi^2/54. Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/108. Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/3)/(Pi/3). Product_{n>=1} (1 - 1/a(n)) = sinh(Pi/2)/(Pi/2) = 3*sqrt(3)/(2*Pi) (A086089). (End) a(n) = A051624(n) + 8*A000217(n). In general, if P(k,n) = the k-th n-gonal number, then (k*n)^2 = P(k^2 + 3,n) + (k^2 - 1)*A000217(n). - Charlie Marion, Mar 09 2022 MAPLE A016766:=n->(3*n)^2: seq(A016766(n), n=0..50); # Wesley Ivan Hurt, Sep 24 2014 MATHEMATICA (3Range[0, 49])^2 (* Alonso del Arte, Sep 24 2014 *) PROG (Maxima) A016766(n):=(3*n)^2\$ makelist(A016766(n), n, 0, 20); /* Martin Ettl, Nov 12 2012 */ (Magma) [(3*n)^2 : n in [0..50]]; // Wesley Ivan Hurt, Sep 24 2014 (PARI) a(n)=9*n^2 \\ Charles R Greathouse IV, Sep 28 2015 CROSSREFS Numbers of the form 9n^2 + kn, for integer n: this sequence (k = 0), A132355 (k = 2), A185039 (k = 4), A057780 (k = 6), A218864 (k = 8). - Jason Kimberley, Nov 09 2012 Cf. A086089. Sequence in context: A077115 A297584 A073946 * A242538 A083353 A083014 Adjacent sequences: A016763 A016764 A016765 * A016767 A016768 A016769 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Zerinvary Lajos, May 30 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 02:09 EST 2022. Contains 358712 sequences. (Running on oeis4.)