The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A016802 a(n) = (4*n)^2. 21
 0, 16, 64, 144, 256, 400, 576, 784, 1024, 1296, 1600, 1936, 2304, 2704, 3136, 3600, 4096, 4624, 5184, 5776, 6400, 7056, 7744, 8464, 9216, 10000, 10816, 11664, 12544, 13456, 14400, 15376, 16384, 17424, 18496, 19600, 20736, 21904, 23104, 24336, 25600, 26896 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A bisection of A016742. Sequence arises from reading the line from 0, in the direction 0, 16, ... in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008 Also, sequence found by reading the line from 0, in the direction 0, 16, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Sep 10 2011 LINKS Ivan Panchenko, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = 16*n^2 = A000290(n)*16. - Omar E. Pol, Dec 11 2008 a(n) = A001105(n)*8 = A016742(n)*4 = A139098(n)*2. - Omar E. Pol, Dec 13 2008 a(n) = a(n-1) + 16*(2*n-1) (with a(0)=0). - Vincenzo Librandi, Nov 20 2010 From Amiram Eldar, Jan 25 2021: (Start) Sum_{n>=1} 1/a(n) = Pi^2/96. Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/192. Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/4)/(Pi/4). Product_{n>=1} (1 - 1/a(n)) = sin(Pi/4)/(Pi/4) = 2*sqrt(2)/Pi (A112628). (End) PROG (PARI) a(n) = (4*n)^2; \\ Michel Marcus, Mar 04 2014 CROSSREFS Cf. A000290, A001539, A016742, A016754, A016814, A016826, A016838, A001105, A112628, A139098. Sequence in context: A316301 A072128 A277016 * A309573 A205064 A102860 Adjacent sequences:  A016799 A016800 A016801 * A016803 A016804 A016805 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 02:47 EDT 2022. Contains 357063 sequences. (Running on oeis4.)