



0, 6, 24, 54, 96, 150, 216, 294, 384, 486, 600, 726, 864, 1014, 1176, 1350, 1536, 1734, 1944, 2166, 2400, 2646, 2904, 3174, 3456, 3750, 4056, 4374, 4704, 5046, 5400, 5766, 6144, 6534, 6936, 7350, 7776, 8214, 8664, 9126, 9600, 10086, 10584, 11094, 11616
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Number of edges of a complete 4partite graph of order 4n, K_n,n,n,n.  Roberto E. Martinez II, Oct 18 2001
Number of edges of the complete bipartite graph of order 7n, K_n, 6n.  Roberto E. Martinez II, Jan 07 2002
Number of edges in the line graph of the product of two cycle graphs, each of order n, L(C_n x C_n).  Roberto E. Martinez II, Jan 07 2002
Total surface area of a cube of edge length n. See A000578 for cube volume. See A070169 and A071399 for surface area and volume of a regular tetrahedron and links for the other Platonic solids.  Rick L. Shepherd, Apr 24 2002
a(n) can represented as n concentric hexagons (see example).  Omar E. Pol, Aug 21 2011
Sequence found by reading the line from 0, in the direction 0, 6, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A003154 in the same spiral.  Omar E. Pol, Sep 08 2011
Together with 1, numbers m such that floor(2*m/3) and floor(3*m/2) are both squares. Example: floor(2*150/3) = 100 and floor(3*150/2) = 225 are both squares, so 150 is in the sequence.  Bruno Berselli, Sep 15 2014
a(n+1) gives the number of vertices in a hexagonlike honeycomb built from A003215(n) congruent regular hexagons (see link). Example: a hexagonlike honeycomb consisting of 7 congruent regular hexagons has 1 core hexagon inside a perimeter of six hexagons. The perimeter has 18 vertices. The core hexagon has 6 vertices. a(2) = 18 + 6 = 24 is the total number of vertices.  Ivan N. Ianakiev, Mar 11 2015
a(n) is the area of the Pythagorean triangle whose sides are (3n, 4n, 5n).  Sergey Pavlov, Mar 31 2017
More generally, if k >= 5 we have that the sequence whose formula is a(n) = (2*k  4)*n^2 is also the sequence found by reading the line from 0, in the direction 0, (2*k  4), ..., in the square spiral whose vertices are the generalized kgonal numbers. In this case k = 5.  Omar E. Pol, May 13 2018
The sequence also gives the number of size=1 triangles within a matchmade hexagon of size n.  John King, Mar 31 2019
For hexagons, the number of matches required is A045945; thus number of size=1 triangles is A033581; number of larger triangles is A307253 and total number of triangles is A045949. See A045943 for analogs for Triangles; see A045946 for analogs for Stars.  John King, Apr 04 2019


LINKS

Nathaniel Johnston, Table of n, a(n) for n = 0..10000
Bruno Berselli, An interpretation of initial terms.
Ivan N. Ianakiev, Hexagonlike honeycomb built form regular congruent hexagons.
Eric Weisstein's World of Mathematics, Platonic Solid.
Index entries for linear recurrences with constant coefficients, signature (3,3,1).


FORMULA

a(n) = A000290(n)*6.  Omar E. Pol, Dec 11 2008
a(n) = A001105(n)*3 = A033428(n)*2.  Omar E. Pol, Dec 13 2008
a(n) = 12*n + a(n1)  6, with a(0)=0.  Vincenzo Librandi, Aug 05 2010
G.f.: 6*x*(1+x)/(1x)^3.  Colin Barker, Feb 14 2012
For n > 0: a(n) = A005897(n)  2.  Reinhard Zumkeller, Apr 27 2014
a(n) = 3*floor(1/(1cos(1/n))) = floor(1/(1n*sin(1/n))) for n > 0.  Clark Kimberling, Oct 08 2014
a(n) = t(4*n)  4*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(4*n)  4*A000217(n).  Bruno Berselli, Aug 31 2017
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/36.
Sum_{n>=1} (1)^(n+1)/a(n) = Pi^2/72 (A086729).
Product_{n>=1} (1 + 1/a(n)) = sqrt(6)*sinh(Pi/sqrt(6))/Pi.
Product_{n>=1} (1  1/a(n)) = sqrt(6)*sin(Pi/sqrt(6))/Pi. (End)


EXAMPLE

From Omar E. Pol, Aug 21 2011: (Start)
Illustration of initial terms as concentric hexagons:
.
. o o o o o o
. o o
. o o o o o o o o o o
. o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o
. o o o o o o o o o o
. o o
. o o o o o o
.
. 6 24 54
.
(End)


MAPLE

seq(6*n^2, n=0..44); # Nathaniel Johnston, Jun 26 2011


MATHEMATICA

6 Range[44]^2 (* Michael De Vlieger, Apr 02 2017 *)
LinearRecurrence[{3, 3, 1}, {0, 6, 24}, 50] (* Harvey P. Dale, Jul 03 2017 *)


PROG

(Haskell)
a033581 = (* 6) . (^ 2)  Reinhard Zumkeller, Apr 27 2014
(PARI) vector(100, n, 6*(n1)^2) \\ Derek Orr, Mar 11 2015


CROSSREFS

Bisection of A032528. Central column of triangle A001283.
Cf. A000217, A000290, A033583, A033428, A009111, A001105, A085250, A086729, A152734, A152751.
Cf. A017593 (first differences).
Sequence in context: A087081 A089973 A277014 * A213393 A334701 A274205
Adjacent sequences: A033578 A033579 A033580 * A033582 A033583 A033584


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), Nov 08 2001


STATUS

approved



