The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064761 a(n) = 15*n^2. 8
 0, 15, 60, 135, 240, 375, 540, 735, 960, 1215, 1500, 1815, 2160, 2535, 2940, 3375, 3840, 4335, 4860, 5415, 6000, 6615, 7260, 7935, 8640, 9375, 10140, 10935, 11760, 12615, 13500, 14415, 15360, 16335, 17340, 18375, 19440, 20535, 21660, 22815 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of edges in a complete 6-partite graph of order 6n, K_n,n,n,n,n,n. LINKS Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = A000290(n)*15 = A033428(n)*5 = A033429(n)*3. - Omar E. Pol, Dec 13 2008 a(n) = A008587(n)*A008585(n). - Reinhard Zumkeller, Apr 12 2010 a(n) = a(n-1) + 30*n - 15 for n>0, a(0)=0. - Vincenzo Librandi, Dec 15 2010 a(n) = A022272(n) + A022272(-n). - Bruno Berselli, Mar 31 2015 a(n) = t(6*n) - 6*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(6*n) - 6*A000217(n). - Bruno Berselli, Aug 31 2017 From Amiram Eldar, Feb 03 2021: (Start) Sum_{n>=1} 1/a(n) = Pi^2/90. Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/180. Product_{n>=1} (1 + 1/a(n)) = sqrt(15)*sinh(Pi/sqrt(15))/Pi. Product_{n>=1} (1 - 1/a(n)) = sqrt(15)*sin(Pi/sqrt(15))/Pi. (End) MATHEMATICA Table[15*n^2, {n, 0, 45}] (* Amiram Eldar, Feb 03 2021 *) PROG (PARI) a(n)=15*n^2 \\ Charles R Greathouse IV, Jun 17 2017 CROSSREFS Cf. A000217, A000290, A008585, A008587, A022272, A033428, A033581, A033583, A033429. Sequence in context: A288747 A223344 A206238 * A005945 A223337 A110755 Adjacent sequences: A064758 A064759 A064760 * A064762 A064763 A064764 KEYWORD nonn,easy AUTHOR Roberto E. Martinez II, Oct 18 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 17:36 EST 2023. Contains 359845 sequences. (Running on oeis4.)