This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244627 G.f. satisfies: A(x) = (4 + A(x)^3) / (5 - 4*x). 4
 1, 2, 10, 84, 882, 10380, 130916, 1729960, 23640770, 331357276, 4737405356, 68818101400, 1012852747220, 15070913484664, 226340757825800, 3426481380787024, 52232521742541410, 801068351764540540, 12351730365539402076, 191363830520437179960 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..350 FORMULA G.f. satisfies: (1) A(x) = 1 + 2*Series_Reversion( x*(1 - 3*x - 2*x^2)/(1 + 2*x) ). (2) A(x) = Sum_{n>=0} C(3*n,n)/(2*n+1) * (4 + 4*x*A(x))^(2*n+1) / 5^(3*n+1). (3) A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where G(x) = (3+x + G(x)^3)/4  is the g.f. of A120592. Recurrence: 17*(n-1)*n*a(n) = 150*(n-1)*(2*n-3)*a(n-1) - 40*(6*n^2 - 24*n + 23)*a(n-2) + 32*(n-2)*(2*n-7)*a(n-3). - Vaclav Kotesovec, Jul 03 2014 a(n) ~ sqrt(15-9*2^(2/3)) * ((60*2^(2/3)+72*2^(1/3)+100)/17)^n / (6*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jul 03 2014 EXAMPLE G.f.: A(x) = 1 + 2*x + 10*x^2 + 84*x^3 + 882*x^4 + 10380*x^5 + 130916*x^6 +... Compare (5 - 4*x)*A(x) = 5 + 6*x + 42*x^2 + 380*x^3 + 4074*x^4 + 48372*x^5 +... to: A(x)^3 = 1 + 6*x + 42*x^2 + 380*x^3 + 4074*x^4 + 48372*x^5 + 613060*x^6 +... PROG (PARI) {a(n)=polcoeff(1 + 2*serreverse(x*(1 - 3*x - 2*x^2)/(1 + 2*x +x*O(x^n))), n)} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n)=local(A=[1], Ax=1+x); for(i=1, n, A=concat(A, 0); Ax=Ser(A); A[#A]=Vec( ( Ax^3 - (5-4*x)*Ax )/2 )[#A]); A[n+1]} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A120592, A244594. Sequence in context: A121516 A024491 A250117 * A113332 A321398 A180715 Adjacent sequences:  A244624 A244625 A244626 * A244628 A244629 A244630 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 02 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 12:55 EDT 2019. Contains 324352 sequences. (Running on oeis4.)