|
|
A152742
|
|
13 times the squares: 13*n^2.
|
|
9
|
|
|
0, 13, 52, 117, 208, 325, 468, 637, 832, 1053, 1300, 1573, 1872, 2197, 2548, 2925, 3328, 3757, 4212, 4693, 5200, 5733, 6292, 6877, 7488, 8125, 8788, 9477, 10192, 10933, 11700, 12493, 13312, 14157, 15028, 15925, 16848, 17797, 18772
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..5000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
|
|
FORMULA
|
a(n) = 13*A000290(n).
a(n) = a(n-1) +26*n -13 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
a(0)=0, a(1)=13, a(2)=52, a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Harvey P. Dale, Feb 18 2015
From G. C. Greubel, Sep 01 2018:(Start)
G.f.: 13*x*(1+x)/(1-x)^3.
E.g.f.: 13*(1+x)*exp(x). (End)
|
|
MATHEMATICA
|
13*Range[0, 40]^2 (* or *) LinearRecurrence[{3, -3, 1}, {0, 13, 52}, 40] (* Harvey P. Dale, Feb 18 2015 *)
|
|
PROG
|
(PARI) a(n)=13*n^2 \\ Charles R Greathouse IV, Oct 07 2015
(MAGMA) [13*n^2: n in [0..50]]; // G. C. Greubel, Sep 01 2018
|
|
CROSSREFS
|
Cf. A000290, A135453.
Sequence in context: A002792 A183941 A022673 * A213837 A047903 A197790
Adjacent sequences: A152739 A152740 A152741 * A152743 A152744 A152745
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Omar E. Pol, Dec 12 2008
|
|
STATUS
|
approved
|
|
|
|