This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A132269 Product{k>=0, 1+floor(n/2^k)}. 15
 1, 2, 6, 8, 30, 36, 56, 64, 270, 300, 396, 432, 728, 784, 960, 1024, 4590, 4860, 5700, 6000, 8316, 8712, 9936, 10368, 18200, 18928, 21168, 21952, 27840, 28800, 31744, 32768, 151470, 156060, 170100, 174960, 210900, 216600, 234000, 240000, 340956 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS If n is written in base-2 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product (1+d(m)d(m-1)d(m-2)...d(2)d(1)d(0))*(1+d(m)d(m-1)d(m-2)...d(2)d(1))*(1+d(m)d(m-1)d(m-2)...d(2))*...*(1+d(m)d(m-1)d(m-2))*(1+d(m)d(m-1))*(1+d(m)). LINKS FORMULA Recurrence: a(n)=(1+n)*a(floor(n/2)); a(2n)=(1+2n)*a(n); a(n*2^m)=product{1<=k<=m, 1+n*2^k}*a(n). a(2^m-1)=2^(m(m+1)/2), a(2^m)=2^(m(m+1)/2)*product{0<=k<=m, 1+1/2^k}, m>=1. a(n)=A132270(2n)=(1+n)*A132270(n). Asymptotic behavior: a(n)=O(n^((1+log_2(n))/2)); this follows from the inequalities below. a(n)<=A098844(n)*product{0<=k<=floor(log_2(n)), 1+1/2^k}. a(n)>=A098844(n)/product{1<=k<=floor(log_2(n)), 1-1/2^k}. a(n)=0, 1+1/2^k}=4.7684620580627... (see constant A081845). a(n)>n^((1+log_2(n))/2)=2^A000217(log_2(n)), lim sup a(n)/A098844(n)=product{k>=0, 1+1/2^k}=4.7684620580627..., for n-->oo (see constant A081845). lim inf a(n)/A098844(n)=1/product{k>0, 1-1/2^k}=1/0.288788095086602421..., for n-->oo (see constant A048651). lim inf a(n)/n^((1+log_2(n))/2)=1, for n-->oo. lim sup a(n)/n^((1+log_2(n))/2)=product{k>=0, 1+1/2^k}=4.7684620580627..., for n-->oo (see constant A081845). lim inf a(n+1)/a(n)=product{k>=0, 1+1/2^k}=4.7684620580627... for n-->oo (see constant A081845). EXAMPLE a(10)=(1+floor(10/2^0))*(1+floor(10/2^1))*(1+floor(10/2^2))*(1+floor(10/2^3))=11*6*3*2=396; a(17)=4860 since 17=10001(base-2) and so a(17)=(1+10001)*(1+1000)*(1+100)*(1+10)*(1+1)(base-2)=18*9*5*3*2=4860. CROSSREFS Cf. A048651, A081845, A132270, A132271(p=10), A132272, A132327(p=3), A132328. For formulas regarding a general parameter p (i.e. terms 1+floor(n/p^k)) see A132271. For the product of terms floor(n/p^k) see A098844, A067080, A132027-A132033, A132263, A132264. Sequence in context: A056188 A020696 A216762 * A053287 A086323 A075999 Adjacent sequences:  A132266 A132267 A132268 * A132270 A132271 A132272 KEYWORD nonn AUTHOR Hieronymus Fischer, Aug 20 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .