OFFSET
0,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1200
Richard J. McIntosh, Some Asymptotic Formulae for q-Hypergeometric Series, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; alternative link.
FORMULA
Equals exp(-Sum_{n>0} sigma_1(n)/(n*12^n)) = exp(-Sum_{n>0} A000203(n)/(n*12^n)).
Equals (1/12; 1/12)_{infinity}, where (a;q)_{infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 05 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(12)) * exp(log(12)/24 - Pi^2/(6*log(12))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(12))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027880(n). (End)
EXAMPLE
0.9097262689059948886363620469770...
MATHEMATICA
digits = 106; NProduct[1-1/12^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
N[QPochhammer[1/12, 1/12]] (* G. C. Greubel, Dec 05 2015 *)
PROG
(PARI) prodinf(k=1, (1-1/12^k)) \\ Michel Marcus, Dec 05 2015
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Hieronymus Fischer, Aug 20 2007
STATUS
approved