login
A132263
Product{0<=k<=floor(log_11(n)), floor(n/11^k)}, n>=1.
16
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 275, 280, 285, 290, 295, 300, 305, 310
OFFSET
1,2
COMMENTS
If n is written in base-11 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).
FORMULA
Recurrence: a(n)=n*a(floor(n/11)); a(n*11^m)=n^m*11^(m(m+1)/2)*a(n).
a(k*11^m)=k^(m+1)*11^(m(m+1)/2), for 0<k<11.
Asymptotic behavior: a(n)=O(n^((1+log_11(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_11(n)))/p^((1+floor(log_11(n)))*floor(log_11(n))/2); equality holds for n=k*11^m, 0<k<11, m>=0. b(n) can also be written n^(1+floor(log_11(n)))/11^A000217(floor(log_11(n))).
Also: a(n)<=3^((1-log_11(3))/2)*n^((1+log_11(n))/2)=1.346673852...^((1-log_11(3))/2)*11^A000217(log_11(n)), equality holds for n=3*11^m, m>=0.
a(n)>c*b(n), where c=0.4751041275076031053975644472... (see constant A132265).
Also: a(n)>c*(sqrt(2)/2^log_11(sqrt(2)))*n^((1+log_11(n))/2)=0.607848303...*11^00217(log_11(n)).
lim inf a(n)/b(n)=0.4751041275076031053975644472..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_p(n))/2)=0.4751041275076031...*sqrt(2)/2^log_11(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_p(n))/2)=sqrt(3)/3^log_11(sqrt(3))=1.346673852..., for n-->oo.
lim inf a(n)/a(n+1)=0.4751041275076031053975644472... for n-->oo (see constant A132265).
EXAMPLE
a(50)=floor(50/11^0)*floor(50/11^1)=50*4=200; a(63)=315 since 63=58(base-11) and so a(63)=58*5(base-11)=63*5=315.
CROSSREFS
For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132027(p=3)-A132033(p=9), A067080(p=10), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.
Sequence in context: A371123 A273880 A203565 * A089868 A089867 A089870
KEYWORD
nonn,base
AUTHOR
Hieronymus Fischer, Aug 20 2007
STATUS
approved