login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132263 Product{0<=k<=floor(log_11(n)), floor(n/11^k)}, n>=1. 16
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 275, 280, 285, 290, 295, 300, 305, 310 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If n is written in base-11 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).

LINKS

Table of n, a(n) for n=1..62.

FORMULA

Recurrence: a(n)=n*a(floor(n/11)); a(n*11^m)=n^m*11^(m(m+1)/2)*a(n).

a(k*11^m)=k^(m+1)*11^(m(m+1)/2), for 0<k<11.

Asymptotic behavior: a(n)=O(n^((1+log_11(n))/2)); this follows from the inequalities below.

a(n)<=b(n), where b(n)=n^(1+floor(log_11(n)))/p^((1+floor(log_11(n)))*floor(log_11(n))/2); equality holds for n=k*11^m, 0<k<11, m>=0. b(n) can also be written n^(1+floor(log_11(n)))/11^A000217(floor(log_11(n))).

Also: a(n)<=3^((1-log_11(3))/2)*n^((1+log_11(n))/2)=1.346673852...^((1-log_11(3))/2)*11^A000217(log_11(n)), equality holds for n=3*11^m, m>=0.

a(n)>c*b(n), where c=0.4751041275076031053975644472... (see constant A132265).

Also: a(n)>c*(sqr(2)/2^log_11(sqr(2)))*n^((1+log_11(n))/2)=0.607848303...*11^00217(log_11(n)).

lim inf a(n)/b(n)=0.4751041275076031053975644472..., for n-->oo.

lim sup a(n)/b(n)=1, for n-->oo.

lim inf a(n)/n^((1+log_p(n))/2)=0.4751041275076031...*sqr(2)/2^log_11(sqr(2)), for n-->oo.

lim sup a(n)/n^((1+log_p(n))/2)=sqr(3)/3^log_11(sqr(3))=1.346673852..., for n-->oo.

lim inf a(n)/a(n+1)=0.4751041275076031053975644472... for n-->oo (see constant A132265).

EXAMPLE

a(50)=floor(50/11^0)*floor(50/11^1)=50*4=200; a(63)=315 since 63=58(base-11) and so a(63)=58*5(base-11)=63*5=315.

CROSSREFS

Cf. A048651, A132019-A132026, A132265, A132267, A000217.

For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.

For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132027(p=3)-A132033(p=9), A067080(p=10), A132264(p=12).

For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Sequence in context: A241673 A108192 A203565 * A089868 A089867 A089870

Adjacent sequences:  A132260 A132261 A132262 * A132264 A132265 A132266

KEYWORD

nonn,base

AUTHOR

Hieronymus Fischer, Aug 20 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 29 08:09 EDT 2014. Contains 246187 sequences.