login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132263 Product{0<=k<=floor(log_11(n)), floor(n/11^k)}, n>=1. 16
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 275, 280, 285, 290, 295, 300, 305, 310 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If n is written in base-11 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).

LINKS

Table of n, a(n) for n=1..62.

FORMULA

Recurrence: a(n)=n*a(floor(n/11)); a(n*11^m)=n^m*11^(m(m+1)/2)*a(n).

a(k*11^m)=k^(m+1)*11^(m(m+1)/2), for 0<k<11.

Asymptotic behavior: a(n)=O(n^((1+log_11(n))/2)); this follows from the inequalities below.

a(n)<=b(n), where b(n)=n^(1+floor(log_11(n)))/p^((1+floor(log_11(n)))*floor(log_11(n))/2); equality holds for n=k*11^m, 0<k<11, m>=0. b(n) can also be written n^(1+floor(log_11(n)))/11^A000217(floor(log_11(n))).

Also: a(n)<=3^((1-log_11(3))/2)*n^((1+log_11(n))/2)=1.346673852...^((1-log_11(3))/2)*11^A000217(log_11(n)), equality holds for n=3*11^m, m>=0.

a(n)>c*b(n), where c=0.4751041275076031053975644472... (see constant A132265).

Also: a(n)>c*(sqrt(2)/2^log_11(sqrt(2)))*n^((1+log_11(n))/2)=0.607848303...*11^00217(log_11(n)).

lim inf a(n)/b(n)=0.4751041275076031053975644472..., for n-->oo.

lim sup a(n)/b(n)=1, for n-->oo.

lim inf a(n)/n^((1+log_p(n))/2)=0.4751041275076031...*sqrt(2)/2^log_11(sqrt(2)), for n-->oo.

lim sup a(n)/n^((1+log_p(n))/2)=sqrt(3)/3^log_11(sqrt(3))=1.346673852..., for n-->oo.

lim inf a(n)/a(n+1)=0.4751041275076031053975644472... for n-->oo (see constant A132265).

EXAMPLE

a(50)=floor(50/11^0)*floor(50/11^1)=50*4=200; a(63)=315 since 63=58(base-11) and so a(63)=58*5(base-11)=63*5=315.

CROSSREFS

Cf. A048651, A132019-A132026, A132265, A132267, A000217.

For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.

For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132027(p=3)-A132033(p=9), A067080(p=10), A132264(p=12).

For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Sequence in context: A108192 A250395 A203565 * A089868 A089867 A089870

Adjacent sequences:  A132260 A132261 A132262 * A132264 A132265 A132266

KEYWORD

nonn,base

AUTHOR

Hieronymus Fischer, Aug 20 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 17 14:23 EST 2014. Contains 252022 sequences.