login
A321471
Heinz numbers of integer partitions that can be partitioned into blocks with sums {1, 2, ..., k} for some k.
6
2, 6, 8, 30, 36, 40, 48, 64, 210, 252, 270, 280, 300, 324, 336, 360, 400, 432, 448, 480, 576, 640, 768, 1024, 2310, 2772, 2940, 2970, 3080, 3150, 3300, 3528, 3564, 3696, 3780, 3920, 3960, 4050, 4200, 4400, 4500, 4536, 4704, 4752, 4860, 4928, 5040, 5280, 5400
OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
These partitions are those that are finer than (k, ..., 3, 2, 1) in the poset of integer partitions of 1 + 2 + ... + k, for some k, ordered by refinement.
EXAMPLE
The sequence of all integer partitions whose Heinz numbers are in the sequence begins: (1), (21), (111), (321), (2211), (3111), (21111), (111111), (4321), (42211), (32221), (43111), (33211), (222211), (421111), (322111), (331111), (2221111), (4111111), (3211111), (22111111), (31111111), (211111111), (1111111111).
The partition (322111) has Heinz number 360 and can be partitioned as ((1)(2)(3)(112)), ((1)(2)(12)(13)), or ((1)(11)(3)(22)), so 360 belongs to the sequence.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Select[Range[2, 1000], Select[Map[Total[primeMS[#]]&, facs[#], {2}], Sort[#]==Range[Max@@#]&]!={}&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 13 2018
STATUS
approved