login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321471 Heinz numbers of integer partitions that can be partitioned into blocks with sums {1, 2, ..., k} for some k. 6
2, 6, 8, 30, 36, 40, 48, 64, 210, 252, 270, 280, 300, 324, 336, 360, 400, 432, 448, 480, 576, 640, 768, 1024, 2310, 2772, 2940, 2970, 3080, 3150, 3300, 3528, 3564, 3696, 3780, 3920, 3960, 4050, 4200, 4400, 4500, 4536, 4704, 4752, 4860, 4928, 5040, 5280, 5400 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

These partitions are those that are finer than (k, ..., 3, 2, 1) in the poset of integer partitions of 1 + 2 + ... + k, for some k, ordered by refinement.

LINKS

Table of n, a(n) for n=1..49.

EXAMPLE

The sequence of all integer partitions whose Heinz numbers are in the sequence begins: (1), (21), (111), (321), (2211), (3111), (21111), (111111), (4321), (42211), (32221), (43111), (33211), (222211), (421111), (322111), (331111), (2221111), (4111111), (3211111), (22111111), (31111111), (211111111), (1111111111).

The partition (322111) has Heinz number 360 and can be partitioned as ((1)(2)(3)(112)), ((1)(2)(12)(13)), or ((1)(11)(3)(22)), so 360 belongs to the sequence.

MATHEMATICA

primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];

facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];

Select[Range[2, 1000], Select[Map[Total[primeMS[#]]&, facs[#], {2}], Sort[#]==Range[Max@@#]&]!={}&]

CROSSREFS

Subsequence of A242422.

Cf. A001970, A002846, A056239, A066723, A112798, A213427, A242422, A265947, A300383, A317141.

Cf. A321467, A321468, A321470, A321472, A321514.

Sequence in context: A056188 A020696 A290249 * A216762 A132269 A053287

Adjacent sequences:  A321468 A321469 A321470 * A321472 A321473 A321474

KEYWORD

nonn

AUTHOR

Gus Wiseman, Nov 13 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 00:25 EDT 2019. Contains 323472 sequences. (Running on oeis4.)