OFFSET
0,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2000
Richard J. McIntosh, Some Asymptotic Formulae for q-Hypergeometric Series, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; alternative link.
FORMULA
Equals exp(-Sum_{n>0} sigma_1(n)/(n*11^n)) = exp(-Sum_{n>0} A000203(n)/(n*11^n)).
Equals (1/11; 1/11)_{infinity}, where (a;q)_{infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 20 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(11)) * exp(log(11)/24 - Pi^2/(6*log(11))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(11))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027879(n). (End)
EXAMPLE
0.900832706809715279949862694760...
MATHEMATICA
digits = 105; NProduct[1-1/11^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
N[QPochhammer[1/11, 1/11], 200] (* G. C. Greubel, Dec 20 2015 *)
PROG
(PARI) prodinf(x=1, 1-1/11^x) \\ Altug Alkan, Dec 20 2015
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Hieronymus Fischer, Aug 20 2007
STATUS
approved